Description Usage Arguments Value Examples
View source: R/predict_suretype.R
Cascade classification model with Random Forest in the first layer and Gaussian Discriminant Analysis in the second layer. This function analyzes the whole dataset comprised in .data
in one batch. To minimize bias in the model, it is recommended to run suretype_model(.)
and build a model per sample basic instead of the whole dataset.
1 | predict_suretype(.data, rf_clf)
|
.data |
Input dataframe coming from |
rf_clf |
Instance of classifier loaded using |
data frame decorated with SureTypeSC genotyping score
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | setwd(system.file(package='SureTypeSCR'))
samplesheet=system.file('files/GSE19247_example.csv',package='SureTypeSCR')
manifest=system.file('files/HumanCytoSNP-12v2_H.bpm',package='SureTypeSCR')
cluster=system.file('files/HumanCytoSNP-12v2_H.egt',package='SureTypeSCR')
clf=system.file('files/rf.clf',package='SureTypeSCR')
#Load data
df=scbasic(manifest,cluster,samplesheet)
# The Random Forest classifier
clf_instance <- scload(clf)
#assign prediction results back to the original dataframe using margittr %<>% operator
#df %<>% predict_suretype(clf_instance)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.