options(knitr.table.format = "html") options(scipen=10) knitr::opts_chunk$set(echo = TRUE, fig.path = savePath_basic) knitr::opts_knit$set(root.dir = savePath_basic) h.i <- 1 h.ii <- 1
r sampleName
r h.i
Data preprocessingAfter the quality control, we perform following preprocessing steps based on some functions of the R package Seurat
. Data is normalized using r normalization.method
.
(Hi-res image: view)
h.i <- h.i + 1 h.ii <- 1
r h.i
Spots annotationr h.i
.r h.ii
ClusteringIn order to identify clusters of all spots, we perform a graph-based clustering by running Seurat
functions.
The cluster information can be found in the meta.data seurat_clusters
of the SeuratObject.
Here is the t-SNE and UMAP plot colored by spot clusters.
(Hi-res image: view)
Here is the result of clusters shown on the tissue image.
(Hi-res image: view)
h.ii <- h.ii + 1
h.i <- h.i + 1 h.ii <- 1
r h.i
OutputRunning this script generates following files by default:
r h.ii
. Html report :
report-stAnno.html.
h.ii <- h.ii + 1
r h.ii
. Markdown report :
report-stAnno.md.
h.ii <- h.ii + 1
r h.ii
. Cluster information file :
cluster/.
h.ii <- h.ii + 1
cat(h.ii, ". **NMF results file** : ", sep = "") cat("[NMF/](./NMF/).\n", sep = "") h.ii <- h.ii + 1
cat(h.ii, ". **Malignancy results file** : ", sep = "") cat("[malignancy/](./malignancy/).\n", sep = "") h.ii <- h.ii + 1
cat(h.ii, ". **Cell type informatrion file** : ", sep = "") cat("[cell_type](./cell_type/).\n", sep = "") h.ii <- h.ii + 1
cat(h.ii, ". **State information file** : ", sep = "") cat("[phenotype](./cancer_state/).\n", sep = "") h.ii <- h.ii + 1
cat(h.ii, ". **Interaction results file** : ", sep = "") cat("[interact](./interact/).\n", sep = "") h.ii <- h.ii + 1
r h.ii
. SeuratObject after analysis above :
SeuratObject.
h.ii <- h.ii + 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.