options(knitr.table.format = "html") options(scipen=10) knitr::opts_chunk$set(echo = TRUE, fig.path = savePath_basic) knitr::opts_knit$set(root.dir = savePath_basic) h.i <- 1 h.ii <- 1
r sampleName
r h.i
Spot statisticsstCancer
pipeline is the matrix generated by Spatial Ranger.if(file.exists(file.path(dataPath, "web_summary.html"))){ file.copy(file.path(dataPath, "web_summary.html"), file.path(savePath_basic, "report-spaceRanger.html"), overwrite = T) cat("* Here is the [summary report](./report-spaceRanger.html) from `Space Ranger`.", sep = "") }
r h.i
.r h.ii
The number of UMIs and detected genes in spotsWe display nUMI
(total number of UMIs) and nGene
(total number of detected genes) here.
(Hi-res image: view)
h.i <- h.i + 1 h.ii <- 1
r h.i
Gene statisticsThe number of genes expressed in at least one cell : r sum(nSpot > 0)
.
r h.i
.r h.ii
Mitochondrial genesSummary of mitochondrial genes percentage (mito.percent
) in cells:
format(summary(object@meta.data[["mito.percent"]]), digits = 3)
(Hi-res image: view)
h.ii <- h.ii + 1
r h.i
.r h.ii
Ribosome genesSummary of ribosome genes percentage (ribo.percent
) in cells:
format(summary(object@meta.data[["ribo.percent"]]), digits = 3)
(Hi-res image: view)
h.ii <- h.ii + 1
r h.i
.r h.ii
Ambient RNAsr h.i
.r h.ii
.1 Highly-expressed genesIn order to analyze the gene expression profiles in detail and identify highly-expressed genes in background mRNAs from lysed cells, we calculate some metrics as shown below.
prop.median
: the median of expression proportions for a gene in each tissue spot.detect.rate
: the detected (#UMI > 0
) rate for a gene in all tissue spots.Here is a plot showing the distributions of gene proportion in spots for the first 100 genes. And the points (genes) are colored according to whether they belongs to mitochondrial, ribosome, or other genes.
(Hi-res image: view)
The plot below shows the relationship between detect.rate
and prop.median
.
(Hi-res image: view)
h.i <- h.i + 1 h.ii <- 1
r h.i
Outputr h.i
.r h.ii
Threshold to filter spotsIn the process above, we use r paste0("region.threshold : ", region.threshold)
to filter the isolated spots, and
r ncol(object)
spots are left.
h.ii <- h.ii + 1
r h.i
.r h.ii
Output filesRunning this script generates following files:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.