RFEAT: Random Forest + Efficiency Analysis Trees

Description Usage Arguments Value Examples

View source: R/rfEAT.R

Description

This function builds m individual Efficiency Analysis Trees in a forest structure.

Usage

1
RFEAT(data, x, y, numStop = 5, m = 50, s_mtry = "BRM", na.rm = TRUE)

Arguments

data

data.frame or matrix containing the variables in the model.

x

Column input indexes in data.

y

Column output indexes in data.

numStop

Minimum number of observations in a node for a split to be attempted.

m

Number of trees to be built.

s_mtry

Number of variables randomly sampled as candidates at each split. The available options are:

  • "BRM": in / 3

  • "DEA1": (t.obs / 2) - out

  • "DEA2": (t.obs / 3) - out

  • "DEA3": t.obs - 2 * out

  • "DEA4": min(t.obs / out, (t.obs / 3) - out)

  • Any integer

na.rm

logical. If TRUE, NA rows are omitted.

Value

A RFEAT object containing:

Examples

1
2
3
4
simulated <- X2Y2.sim(N = 50, border = 0.1)

RFmodel <- RFEAT(data = simulated, x = c(1,2), y = c(3, 4), numStop = 5,
                  m = 50, s_mtry = "BRM", na.rm = TRUE)

MiriamEsteve/EAT documentation built on Jan. 18, 2022, 6:55 p.m.