FilterGausscovF1st = R6::R6Class(
"FilterGausscovF1st",
inherit = mlr3filters::Filter,
public = list(
#' @description Create a GaussCov object.
initialize = function() {
param_set = ps(
p0 = p_dbl(lower = 0, upper = 1, default = 0.01),
kmn = p_int(lower = 0, default = 0),
kmx = p_int(lower = 0, default = 0),
mx = p_int(lower = 1, default = 21),
kex = p_int(lower = 0, default = 0),
sub = p_lgl(default = TRUE),
inr = p_lgl(default = TRUE),
xinr = p_lgl(default = FALSE),
qq = p_int(lower = 0, default = 0)
)
super$initialize(
id = "gausscov_f1st",
task_types = c("classif", "regr"),
param_set = param_set,
feature_types = c("integer", "numeric"),
packages = "gausscov",
label = "Gauss Covariance f1st",
man = "mlr3filters::mlr_filters_gausscov_f1st"
)
}
),
private = list(
.calculate = function(task, nfeat) {
# debug
# pv = list(
# p0 = 0.01,
# kmn = 0,
# kmx = 0,
# mx = 21,
# kex = 0,
# sub = TRUE,
# inr = TRUE,
# xinr = FALSE,
# qq = 0
# )
# empty vector with variable names as vector names
scores = rep(-1, length(task$feature_names))
scores = mlr3misc::set_names(scores, task$feature_names)
# calculate gausscov pvalues
pv = self$param_set$values
x = as.matrix(task$data(cols = task$feature_names))
if (task$task_type == "classif") {
y = as.matrix(as.integer(task$truth()))
} else {
y = as.matrix(task$truth())
}
res = mlr3misc::invoke(gausscov::f1st, y = y, x = x, .args = pv)
res_1 = res[[1]]
res_1 = res_1[res_1[, 1] != 0, , drop = FALSE]
scores[res_1[, 1]] = abs(res_1[, 4])
sort(scores, decreasing = TRUE)
}
)
)
# mlr_filters$add("gausscov_f1st", FilterGausscovF1st)
# # no group variable
# task = tsk("iris")
# # task = tsk("mtcars")
# task$data()
# task$target_names
# filter = flt("gausscov_f1st")
# filter$param_set
# filter$calculate(task)
# as.data.table(filter)
# task$data()$Species
# as.numeric(task$data()$Species)
#
# # graph
# graph = po("filter", filter = flt("gausscov_f1st"), filter.cutoff = 0) %>>%
# po("learner", lrn("classif.rpart"))
# learner = as_learner(graph)
# learner$param_set
# result = learner$train(task)
# result$model$gausscov_f1st
# learner$predict(task)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.