library(treeshap)
data_colon <- data.table::data.table(survival::colon)
data_colon <- na.omit(data_colon[get("etype") == 2, ])
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(data_colon)[3:(ncol(data_colon) - 1)]
x <- model.matrix(
~ -1 + .,
data_colon[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
y <- survival::Surv(
event = (data_colon[, get("status")] |>
as.character() |>
as.integer()),
time = data_colon[, get("time")],
type = "right"
)
set.seed(123)
ranger_num_model <- ranger::ranger(
x = x,
y = y,
data = data_colon,
max.depth = 10,
num.trees = 10
)
# to save some time for these tests, compute model here once:
unified_model <- ranger_surv.unify(ranger_num_model, x)
unified_model2 <- unify(ranger_num_model, x)
test_that('ranger_surv.unify creates an object of the appropriate class', {
expect_true(is.model_unified(unified_model))
expect_true(is.model_unified(unified_model2))
})
test_that('ranger_surv.unify returns an object with correct attributes', {
expect_equal(attr(unified_model, "missing_support"), FALSE)
expect_equal(attr(unified_model, "model"), "ranger")
})
test_that('the ranger_surv.unify function returns data frame with columns of appropriate column', {
unifier <- unified_model$model
expect_true(is.integer(unifier$Tree))
expect_true(is.integer(unifier$Node))
expect_true(is.character(unifier$Feature))
expect_true(is.factor(unifier$Decision.type))
expect_true(is.numeric(unifier$Split))
expect_true(is.integer(unifier$Yes))
expect_true(is.integer(unifier$No))
expect_true(all(is.na(unifier$Missing)))
expect_true(is.numeric(unifier$Prediction))
expect_true(is.numeric(unifier$Cover))
})
test_that("ranger_surv: shap calculates without an error", {
expect_error(treeshap(unified_model, x[1:3,], verbose = FALSE), NA)
})
test_that("ranger_surv: predictions from unified == original predictions", {
obs <- x[1:800, ]
surv_preds <- stats::predict(ranger_num_model, obs)
original <- rowSums(surv_preds$chf)
from_unified <- predict(unified_model, obs)
expect_true(all(abs((from_unified - original) / original) < 10**(-13)))
})
test_that("ranger_surv: mean prediction calculated using predict == using covers", {
intercept_predict <- mean(predict(unified_model, x))
ntrees <- sum(unified_model$model$Node == 0)
leaves <- unified_model$model[is.na(unified_model$model$Feature), ]
intercept_covers <- sum(leaves$Prediction * leaves$Cover) / sum(leaves$Cover) * ntrees
#expect_true(all(abs((intercept_predict - intercept_covers) / intercept_predict) < 10**(-14)))
expect_equal(intercept_predict, intercept_covers)
})
test_that("ranger_surv: covers correctness", {
roots <- unified_model$model[unified_model$model$Node == 0, ]
expect_true(all(roots$Cover == nrow(x)))
internals <- unified_model$model[!is.na(unified_model$model$Feature), ]
yes_child_cover <- unified_model$model[internals$Yes, ]$Cover
no_child_cover <- unified_model$model[internals$No, ]$Cover
if (all(is.na(internals$Missing))) {
children_cover <- yes_child_cover + no_child_cover
} else {
missing_child_cover <- unified_model$model[internals$Missing, ]$Cover
missing_child_cover[is.na(missing_child_cover)] <- 0
missing_child_cover[internals$Missing == internals$Yes | internals$Missing == internals$No] <- 0
children_cover <- yes_child_cover + no_child_cover + missing_child_cover
}
expect_true(all(internals$Cover == children_cover))
})
# tests for ranger_surv.unify (type = "survival")
# to save some time for these tests, compute model here once:
unified_model <- ranger_surv.unify(ranger_num_model, x, type = "survival", times = c(10, 50, 100))
unified_model2 <- unify(ranger_num_model, x, type = "survival", times = c(10, 50, 100))
test_that('ranger_surv.unify (type = "survival") list names == unique.death.times', {
expect_equal(names(unified_model), as.character(c(10, 50, 100)))
expect_equal(names(unified_model2), as.character(c(10, 50, 100)))
})
test_that('ranger_surv.unify (type = "survival") creates an object of the appropriate class', {
expect_s3_class(unified_model, "model_unified_multioutput")
expect_s3_class(unified_model2, "model_unified_multioutput")
lapply(unified_model, function(m) expect_true(is.model_unified(m)))
lapply(unified_model2, function(m) expect_true(is.model_unified(m)))
})
test_that('ranger_surv.unify (type = "survival") returns an object with correct attributes', {
m <- unified_model[[1]]
expect_equal(attr(m, "missing_support"), FALSE)
expect_equal(attr(m, "model"), "ranger")
})
test_that('the ranger_surv.unify (type = "survival") function returns data frame with columns of appropriate column', {
unifier <- unified_model[[1]]$model
expect_true(is.integer(unifier$Tree))
expect_true(is.integer(unifier$Node))
expect_true(is.character(unifier$Feature))
expect_true(is.factor(unifier$Decision.type))
expect_true(is.numeric(unifier$Split))
expect_true(is.integer(unifier$Yes))
expect_true(is.integer(unifier$No))
expect_true(all(is.na(unifier$Missing)))
expect_true(is.numeric(unifier$Prediction))
expect_true(is.numeric(unifier$Cover))
})
test_that('ranger_surv.unify (type = "survival"): shap calculates without an error', {
expect_error(treeshap(unified_model[[1]], x[1:3,], verbose = FALSE), NA)
})
test_that('ranger_surv.unify (type = "survival"): predictions from unified == original predictions', {
for (t in names(unified_model)) {
m <- unified_model[[t]]
death_time <- as.integer(t)
obs <- x[1:800, ]
surv_preds <- stats::predict(ranger_num_model, obs)
original <- surv_preds$survival[, which(surv_preds$unique.death.times == death_time)]
from_unified <- predict(m, obs)
# this is yet kind of strange that values differ so much
expect_true(all(abs((from_unified - original) / original) < 8e-1))
}
})
test_that('ranger_surv.unify (type = "survival"): mean prediction calculated using predict == using covers', {
m <- unified_model[[1]]
intercept_predict <- mean(predict(m, x))
ntrees <- sum(m$model$Node == 0)
leaves <- m$model[is.na(m$model$Feature), ]
intercept_covers <- sum(leaves$Prediction * leaves$Cover) / sum(leaves$Cover) * ntrees
#expect_true(all(abs((intercept_predict - intercept_covers) / intercept_predict) < 10**(-14)))
expect_equal(intercept_predict, intercept_covers)
})
test_that('ranger_surv.unify (type = "survival"): covers correctness', {
for (m in unified_model) {
roots <- m$model[m$model$Node == 0, ]
expect_true(all(roots$Cover == nrow(x)))
internals <- m$model[!is.na(m$model$Feature), ]
yes_child_cover <- m$model[internals$Yes, ]$Cover
no_child_cover <- m$model[internals$No, ]$Cover
if (all(is.na(internals$Missing))) {
children_cover <- yes_child_cover + no_child_cover
} else {
missing_child_cover <- m$model[internals$Missing, ]$Cover
missing_child_cover[is.na(missing_child_cover)] <- 0
missing_child_cover[internals$Missing == internals$Yes | internals$Missing == internals$No] <- 0
children_cover <- yes_child_cover + no_child_cover + missing_child_cover
}
expect_true(all(internals$Cover == children_cover))
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.