#' Inhomogeneous pair correlation function for spatio-temporal point processes on linear networks
#'
#' This function computes the inhomogeneous pair correlation function for spatio-temporal point patterns on linear networks.
#'
#' @usage STLginhom(X,lambda,normalize=FALSE,r=NULL,t=NULL,nxy=10)
#'
#' @param X a spatio-temporal point pattern of class \code{\link{stlpp}}
#' @param lambda values of estimated intensity at data points
#' @param normalize normalization factor to be considered
#' @param r values of argument r where pair correlation function will be evaluated. optional
#' @param t values of argument t where pair correlation function will be evaluated. optional
#' @param nxy pixel array dimensions. optional
#'
#' @seealso \code{\link{STLg}}, \code{\link{STLK}}, \code{\link{STLKinhom}}
#'
#' @author Mehdi Moradi <m2.moradi@yahoo.com>
#'
#' @returns
#' An object of class \code{sumstlpp}.
#'
#' @details
#' This function calculates the inhomogeneous pair correlation function for a spatio-temporal point patterns on a linear network.
#'
#' @references Moradi, M., & Mateu, J. (2020). First-and second-order characteristics of spatio-temporal point processes on linear networks. Journal of Computational and Graphical Statistics, 29(3), 432-443.
#'
#'
#' @examples
#' X <- rpoistlpp(.2,a=0,b=5,L=easynet)
#' d <- density(X,at="points")
#' g <- STLginhom(X,lambda=d,normalize=TRUE)
#' plot(g)
#'
#'
#' @export
STLginhom <- function(X,lambda,normalize=FALSE,r=NULL,t=NULL,nxy=10){
if (!inherits(X, "stlpp")) stop("X should be from class stlpp")
Y <- as.lpp.stlpp(X)
l <- domain(Y)
tleng <- summary(l)$totlength
n <- npoints(Y)
a <- X$time[1]
b <- X$time[2]
trange <- b-a
timev <- X$data$t
sdist <- pairdist(Y)
tdist <- as.matrix(dist(timev))
toler <- default.linnet.tolerance(l)
ml <- matrix(1, n, n)
for (j in 1:n) {
ml[-j, j] <- countends(l, Y[-j], sdist[-j, j], toler = toler)
}
mtplus <- matrix(timev, n, n, byrow = T) + tdist
mtminus <- matrix(timev, n, n, byrow = T) - tdist
mtedge <- (mtplus <= b) + (mtminus >= a)
diag(mtedge) <- 1
lamden <- outer(lambda,lambda,FUN = "*")
edgetl <- mtedge * ml * lamden
maxs <- 0.7*max(sdist[!is.infinite(sdist)])
maxt <- 0.7*(trange/2)
if(is.null(r)) r <- seq((maxs/nxy),maxs,by=(maxs-(maxs/nxy))/(nxy-1))
if(is.null(t)) t <- seq((maxt/nxy),maxt,by=(maxt-(maxt/nxy))/(nxy-1))
g <- matrix(NA, nrow = nxy, ncol = nxy)
no <- sdist == 0 & tdist == 0 | sdist==Inf | sdist>maxs | tdist>maxt
bwl <- bw.nrd0(as.numeric(sdist[!no]))
bwt <- bw.nrd0(as.numeric(tdist[!no]))
for (i in 1:length(r)) {
for (j in 1:length(t)) {
outl <- dkernel(as.numeric(sdist[!no] - r[i]),
sd = bwl)
outt <- dkernel(as.numeric(tdist[!no] - t[j]),
sd = bwt)
g1 <- outl * outt/(edgetl[!no])
g[i, j] <- sum(g1[!is.na(g1) & !is.infinite(g1)])
}
}
if(normalize){
revrho <- outer(1/lambda,1/lambda,FUN = "*")
appx <- (tleng*trange)/(sum(revrho[lower.tri(revrho, diag = FALSE)])*2)
gval <- g * appx
}
else {
gval <- g/(tleng*trange)
}
gout <- list(ginhom = gval, gtheo = matrix(rep(1, length(t) *
length(r)), ncol = nxy), r = r, t = t)
class(gout) <- c("sumstlpp")
attr(gout,"nxy") <- nxy
return(gout)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.