# Morphonode Predictive Model (MPM) - The morphonode R package
# Copyright (C) 2022 Fernando Palluzzi
# e-mail: <fernando.palluzzi@gmail.com>
# Bioinformatics facility
# Gemelli Science and Technological Park (GSTeP)
# Fondazione Policlinico Universitario Agostino Gemelli IRCCS,
# Largo Agostino Gemelli 8, 00168 Roma, Italy
# morphonode is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# morphonode is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# -------------------------------------------------------------------- #
#' @title Morphonode default Robust Binomial Model (RBM) endemble
#'
#' @description Logistic model generated by fitting a simulated dataset
#' of 948 ultrasound profiles (440 malignant and 508 non-malignant),
#' with robust bootstrap standard errors estimation (5000 bootstrap
#' iterations), through the internal morphonode function
#' \code{\link[morphonode]{boot.se}}. The input ultrasound feature
#' dataset was dichotomized before model fitting (see
#' \code{\link[morphonode]{dichotomize}}) to avoid parameter estimation
#' biases due to very low frequency of the levels of some categorical
#' ultrasound features. The RBM is used to estimate the malignancy risk,
#' (R) providing a continuous measure of malignancy (in contrast to the
#' dichotomous prediction of the RFC ensemble). Considering the
#' expected simulated phenotype (y) as the ground truth, two optimal
#' malignancy risk cutoffs were estimated, defining three risk levels:
#' low (R < 0.23), moderate (0.23 <= R <= 0.29), and high (R > 0.29).
#' @name mpm.rbm
#' @usage mpm.rbm
#' @docType data
#' @format
#' "mpm.rbm" is a list of 3 objects:
#' \enumerate{
#' \item "coef", a data.frame reporting bootstrap-based estimations:
#' ultrasound feature (Variable), log(odds ratio) (Estimate),
#' bootstrap standard errors (se.boot), confidence interval lower
#' bound (lower), confidence interval upper bound (upper),
#' confidence level (conf.level), bootstrap estimation method (method),
#' z-score (z), 2-sided p-value (P);
#' \item "model", \code{R} formula representing the fitted model;
#' \item "fit", MLE-based fitted model object of class \code{glm}.
#' }
#'
#' @references
#'
#' Fragomeni SM, Moro F, Palluzzi F, Mascilini F, Rufini V, Collarino A,
#' Inzani F, Giacò L, Scambia G, Testa AC, Garganese G (2022).
#' Evaluating the risk of inguinal lymph node metastases before surgery
#' using the Morphonode Predictive Model: a prospective diagnostic study.
#' Ultrasound xx Xxxxxxxxxx xxx Xxxxxxxxxx. 00(0):000-000.
#' <https://doi.org/00.0000/00000000000000000000>
#'
#' @examples
#'
#' # Create a simulated malignant ultrasound profile
#' x <- new.profile(us.simulate(y = 1))
#'
#' # Lauch the Morhonode Predictive Model
#' u <- us.predict(x)
#'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.