clustify_lists | R Documentation |
Main function to compare scRNA-seq data to gene lists.
clustify_lists(input, ...)
## Default S3 method:
clustify_lists(
input,
marker,
marker_inmatrix = TRUE,
metadata = NULL,
cluster_col = NULL,
if_log = TRUE,
per_cell = FALSE,
topn = 800,
cut = 0,
genome_n = 30000,
metric = "hyper",
output_high = TRUE,
lookuptable = NULL,
obj_out = TRUE,
seurat_out = obj_out,
vec_out = FALSE,
rename_prefix = NULL,
threshold = 0,
low_threshold_cell = 0,
verbose = TRUE,
input_markers = FALSE,
details_out = FALSE,
...
)
## S3 method for class 'Seurat'
clustify_lists(
input,
metadata = NULL,
cluster_col = NULL,
if_log = TRUE,
per_cell = FALSE,
topn = 800,
cut = 0,
marker,
marker_inmatrix = TRUE,
genome_n = 30000,
metric = "hyper",
output_high = TRUE,
dr = "umap",
obj_out = TRUE,
seurat_out = obj_out,
vec_out = FALSE,
threshold = 0,
rename_prefix = NULL,
verbose = TRUE,
details_out = FALSE,
...
)
## S3 method for class 'SingleCellExperiment'
clustify_lists(
input,
metadata = NULL,
cluster_col = NULL,
if_log = TRUE,
per_cell = FALSE,
topn = 800,
cut = 0,
marker,
marker_inmatrix = TRUE,
genome_n = 30000,
metric = "hyper",
output_high = TRUE,
dr = "umap",
obj_out = TRUE,
seurat_out = obj_out,
vec_out = FALSE,
threshold = 0,
rename_prefix = NULL,
verbose = TRUE,
details_out = FALSE,
...
)
input |
single-cell expression matrix, Seurat object, or SingleCellExperiment |
... |
passed to matrixize_markers |
marker |
matrix or dataframe of candidate genes for each cluster |
marker_inmatrix |
whether markers genes are already in preprocessed matrix form |
metadata |
cell cluster assignments,
supplied as a vector or data.frame.
If data.frame is supplied then |
cluster_col |
column in metadata with cluster number |
if_log |
input data is natural log, averaging will be done on unlogged data |
per_cell |
compare per cell or per cluster |
topn |
number of top expressing genes to keep from input matrix |
cut |
expression cut off from input matrix |
genome_n |
number of genes in the genome |
metric |
adjusted p-value for hypergeometric test, or jaccard index |
output_high |
if true (by default to fit with rest of package), -log10 transform p-value |
lookuptable |
if not supplied, will look in built-in table for object parsing |
obj_out |
whether to output object instead of cor matrix |
seurat_out |
output cor matrix or called seurat object (deprecated, use obj_out instead) |
vec_out |
only output a result vector in the same order as metadata |
rename_prefix |
prefix to add to type and r column names |
threshold |
identity calling minimum correlation score threshold, only used when obj_out = T |
low_threshold_cell |
option to remove clusters with too few cells |
verbose |
whether to report certain variables chosen and steps |
input_markers |
whether input is marker data.frame of 0 and 1s (output of pos_neg_marker), and uses alternate enrichment mode |
details_out |
whether to also output shared gene list from jaccard |
dr |
stored dimension reduction |
matrix of numeric values, clusters from input as row names, cell types from marker_mat as column names
# Annotate a matrix and metadata
# Annotate using a different method
clustify_lists(
input = pbmc_matrix_small,
marker = cbmc_m,
metadata = pbmc_meta,
cluster_col = "classified",
verbose = TRUE,
metric = "jaccard"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.