my_overview_info <- function(dat = pscis_phase2, site = my_site){
dat %>% filter(pscis_crossing_id == site)
}
##transpose the data so you can get ranges and filter
my_habitat_info <- function(dat = hab_site, sit = my_site){
left_join(
hab_site %>%
filter(site == sit & location == 'us') %>%
select(site, everything()) %>%
t() %>%
as.data.frame() %>% # as_tibble() %>%
tibble::rownames_to_column() %>%
rename(us = V1),
hab_site %>%
filter(site == sit & location == 'ds') %>%
select(site, everything()) %>%
t() %>%
as.data.frame() %>% # as_tibble() %>%
tibble::rownames_to_column() %>%
rename(ds = V1),
by = 'rowname'
) %>%
mutate(rowname = stringr::str_replace_all(rowname, '_', ' '))
}
##transpose the data so you can get ranges and filter
my_habitat_info2 <- function(dat = hab_site, sit = my_site,
loc = 'us'){
dat %>%
filter(site == sit & location == loc) %>%
select(site, everything()) %>%
t() %>%
as.data.frame() %>% # as_tibble() %>%
tibble::rownames_to_column() %>%
rename(v = V1) %>%
mutate(rowname = stringr::str_replace_all(rowname, '_', ' '))
# filter(column == row) %>%
# pull(v)
}
##transpose the data so you can get ranges and filter
my_habitat_info3 <- function(dat = hab_site, sit = my_site,
loc = 'us', row = 'site'){
dat %>%
filter(site == sit & location == loc) %>%
select(site, everything()) %>%
t() %>%
as.data.frame() %>% # as_tibble() %>%
tibble::rownames_to_column() %>%
# rename(v = V1) %>%
mutate(rowname = stringr::str_replace_all(rowname, '_', ' ')) %>%
filter(rowname == row) %>%
pull(V1)
}
my_pscis_info <- function(dat = pscis_phase2, site = my_site){
dat %>%
filter(pscis_crossing_id == site) %>%
mutate(stream_name = stringr::str_replace_all(stream_name, 'Tributary', 'tributary'))
}
my_bcfishpass <- function(dat = bcfishpass_phase2, site = my_site, round_dig = 0){
dat %>%
mutate(across(where(is.numeric), round, round_dig)) %>%
filter(stream_crossing_id == site) %>%
distinct(stream_crossing_id, .keep_all = T)
}
# my_bcfishpass <- function(dat = bcfishpass_phase2, site = my_site){
# dat %>%
# mutate(across(where(is.numeric), round, 0)) %>%
# filter(pscis_crossing_id == site) %>%
# distinct(pscis_crossing_id, .keep_all = T)
# }
my_watershed_area <- function(dat = wsheds, site = my_site){
dat %>%
filter(pscis_crossing_id == my_site) %>%
pull(area_km)
}
##we needed to back off this b/c maps not ready
my_mapsheet <- function(){
paste0('https://hillcrestgeo.ca/outgoing/fishpassage/projects/bulkley/FishPassage_', my_bcfishpass() %>%
pull(dbm_mof_50k_grid), '.pdf')
}
# my_mapsheet <- function(){
# paste0('https://hillcrestgeo.ca/outgoing/fishpassage/projects/elk/confirmations')
# }
my_priority_info <- function(dat = habitat_confirmations_priorities, sit = my_site, loc = 'us'){
dat %>%
filter(site == sit & location == loc)
}
my_cost_estimate <- function(dat = tab_cost_est_phase2, site = my_site){
dat %>%
filter(pscis_crossing_id == site) %>%
distinct(pscis_crossing_id, .keep_all = T)
}
##this will pull out fish species names from our fish species codes
my_fish_sp <- function(sit = my_site, col_to_pull = quo(observedspp_upstr), df = bcfishpass_phase2){
str_to_pull <- stringr::str_replace_all((my_bcfishpass(dat = df, site = sit) %>% pull(!!col_to_pull)), c("\\{" = "","\\}" = "")) %>%
strsplit(., ",") %>% unlist()
fishbc::freshwaterfish %>%
filter(Code %in% str_to_pull &
!Code %in% c('SST','TR')) %>%
pull(CommonName) %>%
stringr::str_to_lower() %>%
knitr::combine_words()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.