#' LEGACY: Creating a shell script that used the Distributed Cell Profiler script ManualMetadata.py to create groupings
#'
#' @param metadata_split_path
#'
#' @return
#' @export
#'
#' @examples
group_metadata_bash <- function(metadata_split_path, path_base,
python_function = "python ~/dcp_helper/python/ManualMetadata_dir.py ",
metadata_grouping = "[\'Metadata_parent\',\'Metadata_timepoint\', \'Metadata_well\', \'Metadata_fld\', \'Metadata_channel\']"){
bash_file <- paste0(path_base, "group_metadata_split_path.sh")
print("writing bash script for metadata grouping")
# create shell script to expand groupings
fileConn<-file(bash_file)
##########LEGACY
# # Create a shell script
# metadata_split_path %>% unlist() %>% unname() %>% paste0(python_function, ., ' \"', metadata_grouping, '\"') %>%
paste0(python_function, path_base, ' \"', metadata_grouping, '\"') %>%
#adding the bin bash
c('#!/bin/sh',
'pip install --user pandas', #ugly way of managing the dependency of the cellprofiler function
.) %>%
writeLines(., fileConn)
#run system command to make it executable
system(paste0("chmod +x ", bash_file))
#writeLines(c("Hello","World"), fileConn)
close(fileConn)
print(paste0("Now you have to execute the bash file to group metadata: ", bash_file))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.