# This file has been autogenerated. Do not change by hand.
#' Create a parameter object for the function getDbCaseData
#'
#' @details
#' Create an object defining the parameter values.
#'
#' @param useNestingCohort Should the study be nested in a cohort (e.g. people with
#' a specific indication)? If not, the study will be nested
#' in the general population.
#' @param useObservationEndAsNestingEndDate When using a nesting cohort, should the observation
#' period end date be used instead of the cohort end date?
#' @param getVisits Get data on visits? This is needed when matching on visit
#' date is requested later on.
#' @param studyStartDate A calendar date specifying the minimum date where data is
#' used. Date format is 'yyyymmdd'.
#' @param studyEndDate A calendar date specifying the maximum date where data is
#' used. Date format is 'yyyymmdd'.
#' @param maxNestingCohortSize If the nesting cohort is larger than this number it will
#' be sampled to this size. maxCohortSize = 0 indicates no
#' maximum size.
#' @param maxCasesPerOutcome If there are more than this number of cases for a single
#' outcome cases will be sampled to this size.
#' maxCasesPerOutcome = 0 indicates no maximum size.
#'
#' @export
createGetDbCaseDataArgs <- function(useNestingCohort = FALSE,
useObservationEndAsNestingEndDate = TRUE,
getVisits = FALSE,
studyStartDate = "",
studyEndDate = "",
maxNestingCohortSize = 1e+07,
maxCasesPerOutcome = 5e+05) {
analysis <- list()
for (name in names(formals(createGetDbCaseDataArgs))) {
analysis[[name]] <- get(name)
}
class(analysis) <- "args"
return(analysis)
}
#' Create a parameter object for the function selectControls
#'
#' @details
#' Create an object defining the parameter values.
#'
#' @param firstOutcomeOnly Use the first outcome per person?
#' @param washoutPeriod Minimum required numbers of days of observation for inclusion as
#' either case or control.
#' @param controlSelectionCriteria Either a matchingCriteria object as generated using the
#' createMatchingCriteria function, or a samplingCriteria object as
#' generated using the createSamplingCriteria function.
#' @param minAge Minimum age at which patient time will be included in the
#' analysis. Note that information prior to the min age is still used
#' to determine exposure status after the minimum age (e.g. when a
#' prescription was started just prior to reaching the minimum age).
#' Also, outcomes occurring before the minimum age is reached will be
#' considered as prior outcomes when using first outcomes only. Age
#' should be specified in years, but non-integer values are allowed.
#' If not specified, no age restriction will be applied.
#' @param maxAge Maximum age at which patient time will be included in the
#' analysis. Age should be specified in years, but non-integer values
#' are allowed. If not specified, no age restriction will be applied.
#'
#' @export
createSelectControlsArgs <- function(firstOutcomeOnly = TRUE,
washoutPeriod = 180,
controlSelectionCriteria = createMatchingCriteria(),
minAge = NULL,
maxAge = NULL) {
analysis <- list()
for (name in names(formals(createSelectControlsArgs))) {
analysis[[name]] <- get(name)
}
class(analysis) <- "args"
return(analysis)
}
#' Create a parameter object for the function getDbExposureData
#'
#' @details
#' Create an object defining the parameter values.
#'
#' @param covariateSettings Either an object of type covariateSettings as created using the
#' createCovariateSettings function in the FeatureExtraction package, or an
#' object of type SimpleCovariateSettings as created using the
#' createSimpleCovariateSettings function. If NULL then no covariate data is
#' retrieved.
#'
#' @export
createGetDbExposureDataArgs <- function(covariateSettings = NULL) {
analysis <- list()
for (name in names(formals(createGetDbExposureDataArgs))) {
analysis[[name]] <- get(name)
}
class(analysis) <- "args"
return(analysis)
}
#' Create a parameter object for the function createCaseControlData
#'
#' @details
#' Create an object defining the parameter values.
#'
#' @param firstExposureOnly Should only the first exposure per subject be included?
#' @param riskWindowStart The start of the risk window (in days) relative to the index date.
#' This number should be non-positive.
#' @param riskWindowEnd The end of the risk window (in days) relative to the index date. This
#' number should be non-positive.
#' @param exposureWashoutPeriod Minimum required numbers of days of observation for inclusion of an
#' exposure.
#'
#' @export
createCreateCaseControlDataArgs <- function(firstExposureOnly = FALSE,
riskWindowStart = 0,
riskWindowEnd = 0,
exposureWashoutPeriod = 0) {
analysis <- list()
for (name in names(formals(createCreateCaseControlDataArgs))) {
analysis[[name]] <- get(name)
}
class(analysis) <- "args"
return(analysis)
}
#' Create a parameter object for the function fitCaseControlModel
#'
#' @details
#' Create an object defining the parameter values.
#'
#' @param useCovariates Whether to use the covariates in the caseControlsExposure.
#' @param excludeCovariateIds Exclude these covariates from the model.
#' @param includeCovariateIds Include only these covariates in the model.
#' @param profileGrid A one-dimensional grid of points on the log(relative risk) scale where
#' the likelihood for coefficient of variables is sampled. See details.
#' @param profileBounds The bounds (on the log relative risk scale) for the adaptive sampling
#' of the likelihood function.
#' @param prior The prior used to fit the model. See createPrior for details.
#' @param control The control object used to control the cross-validation used to
#' determine the hyperparameters of the prior (if applicable). See
#' createControl for details.
#'
#' @export
createFitCaseControlModelArgs <- function(useCovariates = FALSE,
excludeCovariateIds = c(),
includeCovariateIds = c(),
profileGrid = NULL,
profileBounds = c(log(0.1), log(10)),
prior = createPrior("laplace", useCrossValidation = TRUE),
control = createControl(cvType = "auto",
startingVariance = 0.01,
tolerance = 2e-07,
cvRepetitions = 10,
selectorType = "byPid",
noiseLevel = "quiet")) {
analysis <- list()
for (name in names(formals(createFitCaseControlModelArgs))) {
analysis[[name]] <- get(name)
}
class(analysis) <- "args"
return(analysis)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.