View source: R/BayesianSynthesis.R
approximateHierarchicalNormalPosterior | R Documentation |
Approximate a Bayesian posterior from a set ofCyclops
likelihood profiles
under a hierarchical normal model
using the Markov chain Monte Carlo engine BEAST.
approximateHierarchicalNormalPosterior(
likelihoodProfiles,
chainLength = 1100000,
burnIn = 1e+05,
subSampleFrequency = 100,
effectPriorMean = 0,
effectPriorSd = 0.5,
nu0 = 1,
sigma0 = 1,
effectStartingValue = 0,
precisionStartingValue = 1,
seed = 1
)
likelihoodProfiles |
List of grid likelihoods profiled with |
chainLength |
Number of MCMC iterations. |
burnIn |
Number of MCMC iterations to consider as burn in. |
subSampleFrequency |
Subsample frequency for the MCMC. |
effectPriorMean |
Prior mean for global parameter |
effectPriorSd |
Prior standard deviation for the global parameter |
nu0 |
Prior "sample size" for precision (with precision ~ gamma(nu0/2, nu0*sigma0/2)) |
sigma0 |
Prior "variance" for precision (with precision ~ gamma(nu0/2, nu0*sigma0/2)) |
effectStartingValue |
Initial value for global & local parameter |
precisionStartingValue |
Initial value for the precision |
seed |
Seed for the random number generator. |
A data frame with the point estimates and 95% credible intervals for the the global and local parameter, as well as the global precision. Attributes of the data frame contain the MCMC trace for diagnostics.
# TBD
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.