plotMcmcTrace | R Documentation |
Plot MCMC trace
plotMcmcTrace(
estimate,
showEstimate = TRUE,
dataCutoff = 0.01,
fileName = NULL
)
estimate |
An object as generated using the |
showEstimate |
Show the parameter estimates (mode) and 95 percent confidence intervals? |
dataCutoff |
This fraction of the data at both tails will be removed. |
fileName |
Name of the file where the plot should be saved, for example 'plot.png'. See the function ggplot2::ggsave in the ggplot2 package for supported file formats. |
Plot the samples of the posterior distribution of the mu and tau parameters. Samples are taken using Markov-chain Monte Carlo (MCMC).
A Ggplot object. Use the ggplot2::ggsave function to save to file.
computeBayesianMetaAnalysis
# Simulate some data for this example:
populations <- simulatePopulations()
# Fit a Cox regression at each data site, and approximate likelihood function:
fitModelInDatabase <- function(population) {
cyclopsData <- Cyclops::createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
data = population,
modelType = "cox"
)
cyclopsFit <- Cyclops::fitCyclopsModel(cyclopsData)
approximation <- approximateLikelihood(cyclopsFit, parameter = "x", approximation = "custom")
return(approximation)
}
approximations <- lapply(populations, fitModelInDatabase)
approximations <- do.call("rbind", approximations)
# At study coordinating center, perform meta-analysis using per-site approximations:
estimate <- computeBayesianMetaAnalysis(approximations)
plotMcmcTrace(estimate)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.