#' Dynamic programming Solution for Knapsack Problem
#' @name knapsack_dynamic
#' @param x is a data frame with two columns w(weight) and v(value)
#' @param W is maximum weight(capacity) of knapsack
#' @return \code{list} List of object containing \code{value} giving maximum value of Knapsack out of dataframe and \code{elements} giving weight of
#' selected elements from data frame x
#' @usage knapsack_dynamic(x,W)
#'
#' @examples
#' RNGversion(min(as.character(getRversion()),"3.6.1"))
#' set.seed(42,kind="Mersenne-Twister",normal.kind = "Inversion")
#' n <- 2000
#' knapsack_objects <-data.frame(w=sample(1:4000, size = n, replace = TRUE),
#' v=runif(n = n, 0, 10000))
#' l<-knapsack_dynamic(knapsack_objects[1:12,],3500)
#'
#' @description The knapsack problem is a combinatorial optimization problem.
#' A dataframe is given having two parameters, weight and value.
#' Each value has its own weight and we have to pack items with maximum value and within weight capacity
#' This function should return the same results as the brute force algorithm,
#' but unlike the brute force it should scale much better since the algorithm will run in O<Wn>.
#' @seealso \url{https://en.wikipedia.org/wiki/Knapsack_problem#0.2F1_knapsack_problem}
#' @export
knapsack_dynamic <- function(x,W){
stopifnot(is.data.frame(x), is.numeric(x$v), is.numeric(x$w), is.numeric(W), W!=1)
#A is value matrix
#A columns are maximum weight of knapsack(0:W)
#A rows are items(x$w)(0:weight of the last item)
lw<- length(x$w)
A <- matrix(0, nrow = lw+1, ncol = W+1)
# defining knapsack_object
# RNGversion(min(as.character(getRversion()),"3.6.1"))
# set.seed(42,kind="Mersenne-Twister",normal.kind = "Inversion")
# n <- 2000
# knapsack_objects <-data.frame(w=sample(1:4000, size = n, replace = TRUE),
# v=runif(n = n, 0, 10000))
for (i in 2:(lw+1)) {
for (j in 2:(W+1)) {
if ((x$w[i-1])>j) {
A[i,j]<- A[i-1,j]
}
else{
A[i,j]<- max(A[i-1,j],(x$v[i-1]+A[i-1,j-x$w[i-1]]))
}
}
}
#Now finding included elements in knapsack, maximum value and current weight of knapsack
i <- lw+1
j <- W+1
k <- 1
knapsack_Elements <- c()
TotalW <- 0
MaxValue <- 0
repeat{
if(A[i,j] == A[i-1,j]) {
i <- i-1
}
else {
knapsack_Elements[k] <- i-1
k<- k+1
j <- j-x$w[i-1]
i <- i-1
}
if((i<= 1) ||(j<=1)) {
return(list( 'value' = round(A[lw+1, (W+1)]), 'elements' = sort(knapsack_Elements)))
break}
}
}
# Question How much time does it takes to run the algorithm for n = 500 objects?
# system.time(knapsack_dynamic(knapsack_objects[1:16,],3500))
# Profiling
# install library --> devtools::install_github("hadley/lineprof")
# library(lineprof)
# source("")
# l <- lineprof(knapsack_dynamic())
# l
# shine(l)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.