#' Fit the SparseMSE model
#'
#' Fit the SparseMSE approach of Chan et al. (2020). Note: computationally-intensive bootstrap confidence intervals are only computed as part of a call to the \code{estimates()} function.
#'
#' @usage sparsemse(data, pthresh=0.02)
#'
#' @param data object of class "MSEdata" representing list inclusion pattern counts.
#' @param pthresh p-value threshold for forward stepwise p-value thresholding. Default is 0.02.
#'
#' @return Object of class "sparsemse" containing the fitted model "fit" as well as the arguments "args" passed to this function. Use the function \code{estimates()} to recover point and interval estimates.
#'
#' @examples
#' sparsemse_fit <- sparsemse(UK)
#' estimates(sparsemse_fit, mc.cores = 1)
#'
#' @import assert
#' @export
sparsemse <- function(data,
pthresh = 0.02) {
assert(is.MSEdata(data))
assert(is.numeric(pthresh), length(pthresh) == 1)
args <- list(data=data, pthresh=pthresh)
fit <- SparseMSE::estimatepopulation.0(data, pthresh = pthresh, quantiles = c())
sparsemse_fit <- list(
fit = fit,
args = args
)
structure(sparsemse_fit, class=c("MSEfit", "sparsemse"))
}
is.sparsemse <- function(x) {
inherits(x, "sparsemse")
}
getGLM <- function(sparsemse_fit) {
assert(is.sparsemse(sparsemse_fit))
return(sparsemse_fit$fit$MSEfit$fit)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.