HTE1.fun <- function(time, Psi, G, Psib, sigmaPsib, thetaH, b){
Pmax <- PmaxPsi1.fun(Psi, G, Psib, sigmaPsib)
GR50 <- GRPsiLin.fun(Psi, Psib, thetaH)
GR50 <- ifelse(GR50==0, 1e-08, GR50)
plogis(b * (log(time) - log(1/GR50)))*Pmax
}
"HTE1"<- function(fixed = c(NA, NA, NA, NA, NA),
names = c("G", "Psib", "sigmaPsib", "thetaH", "b")){
# HT-to-event. With shifted exponential + GR50 linear
## Checking arguments
numParm <- 5
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if ( !(length(fixed) == numParm) ) {stop("Not correct 'fixed' argument")}
# Only G can be constrained
if (any(!is.na(fixed[2:5]))) {stop("Only the G parameter can be constrained, at the moment")}
## Handling 'fixed' argument
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
fct <- function(x, parm){
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
S <- HTE1.fun(x[,1], x[,2], parmMat[,1], parmMat[,2], parmMat[,3],
parmMat[,4], parmMat[,5])
return(S)
}
names <- names[notFixed]
ss <- function(data){
data <- subset(data, is.finite(data[,1])==T)
PsiF <- factor(data[,2])
result <- c()
for(i in 1:length(levels(PsiF))){
temp <- subset(data, data[,2] == levels(PsiF)[i])
x <- temp[,1] + 0.0001; y <- temp[,3]
# self-start
d <- max(y) * 1.05
pseudoY <- log((d - y)/(y + 0.00001) + 1e-06 )
coefs <- coef( lm(pseudoY ~ log(x+0.000001)))
k <- -coefs[1]; b <- coefs[2]
ED50 <- exp(k/b)
modT <- try(nls(y ~ d/(1 + exp(b * (log(x + 0.000001) - log(ED50)))),
start = list(d = d, b = b, ED50 = ED50)), silent=T)
if(inherits(modT, "try-error")) {
res <- as.numeric(levels(PsiF)[i])
result <- c(result, res)}
}
# result contiene i livelli da escludere dal fitting
dataset_cum <- data # subset(data, is.finite(data[,1])==T)
if(is.null(result) != T){
for(i in 1:length(result)) dataset_cum <- subset(dataset_cum, dataset_cum[,2] != result[i])}
PsiF <- factor(dataset_cum[,2])
x1 <- dataset_cum[,1]
x2 <- dataset_cum[,2]
y <- dataset_cum[,3]
modI <- drm(y ~ x1, fct=LL.3(), curveid=PsiF,
pmodels=list(~1,~PsiF-1,~PsiF-1),
data=dataset_cum)
psiLevels <- as.numeric(levels(PsiF))
b <- - coef(modI)[1]
Pmax <- coef(modI)[2:(length(psiLevels)+1)]
modPmax <- drm(Pmax ~ psiLevels, fct=PmaxPsi1(fixed = fixed[1:3]))
if(is.na(fixed[1])){
G <- coef(modPmax)[1]; Psib <- coef(modPmax)[2]; sigmaPsib <- coef(modPmax)[3]
} else {
G <- fixed[1]; Psib <- coef(modPmax)[1]; sigmaPsib <- coef(modPmax)[2]
}
GR50 <- 1/coef(modI)[(length(psiLevels)+2):length(coef(modI))]
modGR <- drm(GR50 ~ psiLevels, fct=GRPsiLin())
thetaH <- coef(modGR)[2]; Psib2 <- coef(modGR)[1]
psib <- mean(Psib, Psib2)
retVal <- c(G, psib, sigmaPsib, thetaH, b)
return(retVal[is.na(fixed)]) }
GR <- function(parms, respl, reference="control", type="relative", Psi){
# Questa funzione restituisce il germination rate, not time
# respl รจ su una scala relativa ]0,1[
HTE1.gra <- function(G, Psib, sigmaPsib, thetaH, b, Psi, g) {
.Pmax <- PmaxPsi1.fun(Psi, G, Psib, sigmaPsib)
.Pmax <- ifelse(.Pmax > 0, .Pmax, 0)
.temp2 <- (.Pmax - g)/g
.temp2 <- ifelse(.temp2 < 0, 0, .temp2)
.GR50 <- GRPsiLin.fun(Psi, Psib, thetaH)
.GR50 <- ifelse(.GR50>0, .GR50, 0)
res <- as.numeric( exp( - (1/b)*log(.temp2) + log(1/.GR50) ) )
res
}
HTE1.graRel <- function(G, Psib, sigmaPsib, thetaH, b, Psi, g) {
.temp2 <- (1 - g)/g
.temp2 <- ifelse(.temp2 < 0, 0, .temp2)
.GR50 <- GRPsiLin.fun(Psi, Psib, thetaH)
.GR50 <- ifelse(.GR50>0, .GR50, 0)
res <- as.numeric( exp( - (1/b)*log(.temp2) + log(1/.GR50) ) )
res
}
G <- as.numeric(parms[1]); Psib <- as.numeric(parms[2])
sigmaPsib <- as.numeric(parms[3]); thetaH <- as.numeric(parms[4])
b <- as.numeric(parms[5])
g <- respl #/100
if(type=="absolute"){
EDp <- HTE1.gra(G, Psib, sigmaPsib, thetaH, b, Psi, g)
#Approximation of derivatives(finite differences)
d1.1 <- HTE1.gra(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d1.2 <- HTE1.gra(G + 10e-6, Psib, sigmaPsib, thetaH, b, Psi, g)
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HTE1.gra(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d2.2 <- HTE1.gra(G, Psib + 10e-6, sigmaPsib, thetaH, b, Psi, g)
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HTE1.gra(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d3.2 <- HTE1.gra(G, Psib, sigmaPsib + 10e-6, thetaH, b, Psi, g)
d3<- (d3.2 - d3.1)/10e-6
d4.1 <- HTE1.gra(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d4.2 <- HTE1.gra(G, Psib, sigmaPsib, thetaH+ 10e-6, b, Psi, g)
d4 <- (d4.2 - d4.1)/10e-6
d5.1 <- HTE1.gra(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d5.2 <- HTE1.gra(G, Psib, sigmaPsib, thetaH, b + 10e-6, Psi, g)
d5 <- (d5.2 - d5.1)/10e-6
EDder <- c(d1, d2, d3, d4, d5)
} else{ if(type == "relative") {
EDp <- HTE1.graRel(G, Psib, sigmaPsib, thetaH, b, Psi, g)
#Approximation of derivatives(finite differences)
d1.1 <- HTE1.graRel(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d1.2 <- HTE1.graRel(G + 10e-6, Psib, sigmaPsib, thetaH, b, Psi, g)
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HTE1.graRel(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d2.2 <- HTE1.graRel(G, Psib + 10e-6, sigmaPsib, thetaH, b, Psi, g)
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HTE1.graRel(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d3.2 <- HTE1.graRel(G, Psib, sigmaPsib + 10e-6, thetaH, b, Psi, g)
d3<- (d3.2 - d3.1)/10e-6
d4.1 <- HTE1.graRel(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d4.2 <- HTE1.graRel(G, Psib, sigmaPsib, thetaH+ 10e-6, b, Psi, g)
d4 <- (d4.2 - d4.1)/10e-6
d5.1 <- HTE1.graRel(G, Psib, sigmaPsib, thetaH, b, Psi, g)
d5.2 <- HTE1.graRel(G, Psib, sigmaPsib, thetaH, b + 10e-6, Psi, g)
d5 <- (d5.2 - d5.1)/10e-6
EDder <- c(d1, d2, d3, d4, d5)
} }
return(list(EDp, EDder))
}
deriv1 <- function(x, parm){
#Approximation by using finite differences
parmMat <- matrix(parmVec, nrow(parm),
numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
a <- as.numeric(parmMat[,1])
b <- as.numeric(parmMat[,2])
ci <- as.numeric(parmMat[,3])
di <- as.numeric(parmMat[,4])
e <- as.numeric(parmMat[,5])
d1.1 <- HTE1.fun(x[,1], x[,2], a, b, ci,
di, e)
d1.2 <- HTE1.fun(x[,1], x[,2], (a + 10e-6), b, ci,
di, e)
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HTE1.fun(x[,1], x[,2], a, b, ci,
di, e)
d2.2 <- HTE1.fun(x[,1], x[,2], a, (b + 10e-6), ci,
di, e)
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HTE1.fun(x[,1], x[,2], a, b, ci,
di, e)
d3.2 <- HTE1.fun(x[,1], x[,2], a, b, (ci + 10e-6),
di, e)
d3 <- (d3.2 - d3.1)/10e-6
d4.1 <- HTE1.fun(x[,1], x[,2], a, b, ci,
di, e)
d4.2 <- HTE1.fun(x[,1], x[,2], a, b, ci,
(di + 10e-6), e)
d4 <- (d4.2 - d4.1)/10e-6
d5.1 <- HTE1.fun(x[,1], x[,2], a, b, ci,
di, e)
d5.2 <- HTE1.fun(x[,1], x[,2], a, b, ci,
di, (e + 10e-6))
d5 <- (d5.2 - d5.1)/10e-6
cbind(d1, d2, d3, d4, d5)[,notFixed]
}
name <- "HTE1"
text <- "Hydro-time model with shifted exponential for Pmax and linear model for GR50"
returnList <- list(fct=fct, ssfct=ss, name = name, names=names, text=text, edfct=GR, deriv1=deriv1)
class(returnList) <- "drcMean"
invisible(returnList)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.