#HT-to-event. With shifted exponential + GR50polynomial (convex up)
HTE3.fun <- function(time, Psi, G, Psib, sigmaPsib, thetaH, b){
Pmax <- PmaxPsi1.fun(Psi, G, Psib, sigmaPsib)
GR50 <- GRPsiPol.fun(Psi, Psib, thetaH)
plogis(b * (log(time) - log(1/GR50)))*Pmax
}
"HTE3" <- function(fixed = c(NA, NA, NA, NA, NA),
names = c("G", "Psib", "sigmaPsib", "thetaH", "b")){
numParm <- 5
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if ( !(length(fixed) == numParm) ) {stop("Not correct 'fixed' argument")}
# Only G can be constrained
if (any(!is.na(fixed[2:5]))) {stop("Only the G parameter can be constrained, at the moment")}
## Handling 'fixed' argument
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
fct <- function(x, parm){
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
parm <- parmMat
S <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3],
parm[,4], parm[,5])
return(S)
}
names <- names[notFixed]
name <- "HTE3"
ss <- function(data){
data <- subset(data, is.finite(data[,1])==T)
result <- c()
PsiF <- factor(data[,2])
for(i in 1:length(levels(PsiF))){
temp <- subset(data, data[,2] == levels(PsiF)[i])
x <- temp[,1] + 0.0001; y <- temp[,3]
# self-start
d <- max(y) * 1.05
pseudoY <- log((d - y)/(y + 0.00001) + 1e-06 )
coefs <- coef( lm(pseudoY ~ log(x+0.000001)))
k <- -coefs[1]; b <- coefs[2]
ED50 <- exp(k/b)
modT <- try(nls(y ~ d/(1 + exp(b * (log(x + 0.000001) - log(ED50)))),
start = list(d = d, b = b, ED50 = ED50)), silent=T)
if(inherits(modT, "try-error")) {
res <- as.numeric(levels(PsiF)[i])
result <- c(result, res)}
}
result
dataset_cum <- subset(data, is.finite(data[,1])==T)
if(is.null(result)!=T){
for(i in 1:length(result)) dataset_cum <- subset(dataset_cum, dataset_cum[,2] != result[i])}
PsiF <- factor(dataset_cum[,2])
x1 <- dataset_cum[,1]
x2 <- dataset_cum[,2]
y <- dataset_cum[,3]
modI <- drm(y ~ x1, fct=LL.3(), curveid=PsiF, pmodels=list(~1,~PsiF-1,~PsiF-1), data=dataset_cum)
psiLevels <- as.numeric(levels(PsiF))
b <- - coef(modI)[1]
Pmax <- coef(modI)[2:(length(psiLevels)+1)]
modPmax <- drm(Pmax ~ psiLevels, fct=PmaxPsi1())
if(is.na(fixed[1])){
G <- coef(modPmax)[1]; Psib <- coef(modPmax)[2]; sigmaPsib <- coef(modPmax)[3]
} else {
G <- fixed[1]; Psib <- coef(modPmax)[1]; sigmaPsib <- coef(modPmax)[2]
}
# G <- coef(modPmax)[3]; Psib <- coef(modPmax)[1]; sigmaPsib <- coef(modPmax)[2]
GR50 <- 1/coef(modI)[(length(psiLevels)+2):length(coef(modI))]
modGR <- drm(GR50 ~ psiLevels, fct=GRPsiPol())
thetaH <- coef(modGR)[2]; Psib2 <- coef(modGR)[1]
psib <- mean(Psib, Psib2)
return(c(G, Psib, sigmaPsib, thetaH, b)[is.na(fixed)]) }
GR <- function(parms, respl, reference="control", type="relative", Psi){
G <- as.numeric(parms[1]); Psib<- as.numeric(parms[2])
sigmaPsib<- as.numeric(parms[3]); thetaH<- as.numeric(parms[4])
b <- as.numeric(parms[5])
g <- respl/100
if(type=="absolute"){
.Pmax <- PmaxPsi1.fun(Psi, G, Psib, sigmaPsib)
.Pmax <- ifelse(.Pmax > 0, .Pmax, 0)
.temp2 <- (.Pmax - g)/g
.temp2 <- ifelse(.temp2 < 0, 0, .temp2)
.GR50 <- GRPsiPol.fun(Psi, Psib, thetaH)
.GR50 <- ifelse(.GR50>0, .GR50, 0)
res <- as.numeric( exp( - (1/b)*log(.temp2) + log(1/.GR50) ) )
EDp <- 1/res
.GR <- EDp
gra <- function(G, Psib, sigmaPsib, thetaH, b) 1/exp( - (1/b)*log( (1/g)* (G * (1 - exp( - (Psi - Psib) * (1/sigmaPsib))) - g)) + log( thetaH/(-(Psi^2 - Psib^2))) )
#Beginning of derivatives (finite differences) ###########################
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G + 10e-6, Psib, sigmaPsib, thetaH, b)
d1 <- (d1.2 - d1.1)/10e-6
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G, Psib + 10e-6, sigmaPsib, thetaH, b)
d2 <- (d1.2 - d1.1)/10e-6
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G, Psib, sigmaPsib + 10e-6, thetaH, b)
d3 <- (d1.2 - d1.1)/10e-6
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G, Psib, sigmaPsib, thetaH + 10e-6, b)
d4 <- (d1.2 - d1.1)/10e-6
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G, Psib, sigmaPsib, thetaH, b + 10e-6)
d5 <- (d1.2 - d1.1)/10e-6
#End of derivatives #########################
EDder <- c(d1,d2,d3,d4,d5)
} else{ if(type=="relative") {
.Pmax <- PmaxPsi1.fun(Psi, G, Psib, sigmaPsib)
.Pmax <- ifelse(.Pmax > 0, .Pmax, 0)
.temp2 <- (1 - g)/g
.GR50 <- GRPsiPol.fun(Psi, Psib, thetaH)
.GR50 <- ifelse(.GR50>0, .GR50, 0)
res <- as.numeric( exp( - (1/b)*log(.temp2) + log(1/.GR50) ) )
EDp <- 1/res
.GR <- EDp
gra <- function(G, Psib, sigmaPsib, thetaH, b) 1/exp( - (1/b)*log( (1/g)* (G * (1 - exp( - (Psi - Psib) * (1/sigmaPsib))) - g)) + log( thetaH/(-(Psi^2 - Psib^2))) )
#Beginning of derivatives (finite differences) ###########################
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G + 10e-6, Psib, sigmaPsib, thetaH, b)
d1 <- (d1.2 - d1.1)/10e-6
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G, Psib + 10e-6, sigmaPsib, thetaH, b)
d2 <- (d1.2 - d1.1)/10e-6
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G, Psib, sigmaPsib + 10e-6, thetaH, b)
d3 <- (d1.2 - d1.1)/10e-6
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G, Psib, sigmaPsib, thetaH + 10e-6, b)
d4 <- (d1.2 - d1.1)/10e-6
d1.1 <- gra(G, Psib, sigmaPsib, thetaH, b)
d1.2 <- gra(G, Psib, sigmaPsib, thetaH, b + 10e-6)
d5 <- (d1.2 - d1.1)/10e-6
#End of derivatives #########################
EDder <- c(d1,d2,d3,d4,d5)
} }
return(list(EDp, EDder))
}
deriv1 <- function(x, parm){
parmMat <- matrix(parmVec, nrow(parm),
numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
parm <- parmMat
#Approximation by using finite differences
d1.1 <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3],
parm[,4], parm[,5])
d1.2 <- HTE3.fun(x[,1], x[,2], (parm[,1] + 10e-6), parm[,2], parm[,3],
parm[,4], parm[,5])
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3],
parm[,4], parm[,5])
d2.2 <- HTE3.fun(x[,1], x[,2], parm[,1], (parm[,2] + 10e-6), parm[,3],
parm[,4], parm[,5])
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3],
parm[,4], parm[,5])
d3.2 <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], (parm[,3] + 10e-6),
parm[,4], parm[,5])
d3 <- (d3.2 - d3.1)/10e-6
d4.1 <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3],
parm[,4], parm[,5])
d4.2 <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3],
(parm[,4] + 10e-6), parm[,5])
d4 <- (d4.2 - d4.1)/10e-6
d5.1 <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3],
parm[,4], parm[,5])
d5.2 <- HTE3.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3],
parm[,4], (parm[,5] + 10e-6))
d5 <- (d5.2 - d5.1)/10e-6
cbind(d1, d2, d3, d4, d5)[,notFixed]
}
text <- "Hydro-time model with shifted exponential for Pmax and polynomial model (convex up) for GR50"
returnList <- list(fct=fct, ssfct=ss, name = name, names=names, text=text, edfct=GR, deriv1=deriv1)
class(returnList) <- "drcMean"
invisible(returnList)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.