View source: R/plotCellTypePropsMeanVar.R
plotCellTypePropsMeanVar | R Documentation |
This function returns a plot of the log10(proportion) versus log10(variance) given a matrix of cell type counts. The rows are the clusters/cell types and the columns are the samples.
plotCellTypePropsMeanVar(x)
x |
a matrix or table of counts |
The expected variance under a binomial distribution is shown in the solid
line, and the points represent the observed variance for each cell type/row
in the counts table. The blue line shows the empirical Bayes variance
that is used in propeller
.
The mean and variance for each cell type is calculated across all samples.
a base R plot
Belinda Phipson
library(limma) # Generate some data # Total number of samples nsamp <- 10 # True cell type proportions p <- c(0.05, 0.15, 0.35, 0.45) # Parameters for beta distribution a <- 40 b <- a*(1-p)/p # Sample total cell counts per sample from negative binomial distribution numcells <- rnbinom(nsamp,size=20,mu=5000) true.p <- matrix(c(rbeta(nsamp,a,b[1]),rbeta(nsamp,a,b[2]), rbeta(nsamp,a,b[3]),rbeta(nsamp,a,b[4])),byrow=TRUE, ncol=nsamp) counts <- matrix(NA,ncol=nsamp, nrow=nrow(true.p)) rownames(counts) <- paste("c",0:(nrow(true.p)-1), sep="") for(j in 1:length(p)){ counts[j,] <- rbinom(nsamp, size=numcells, prob=true.p[j,]) } plotCellTypePropsMeanVar(counts)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.