# Activate Libraries ------------------------------------------------------
library(demogmx)
library(dplyr)
library(testthat)
# Start unit tests --------------------------------------------------------
## Correct inputs ---------------------------------------------------------
test_that("correct inputs are valid", {
# Valid parameter set
expect_silent(get_aging_rate(v_state = c("National", "Mexico City"),
v_year = 1999,
v_sex = "Total",
v_age = c(10, 25, 55, 75)))
})
### State inputs ----------------------------------------------------------
test_that("state inputs are correct", {
# Error in v_state
expect_error(get_aging_rate(v_state = "national", #National <- correct
v_year = 1999,
v_sex = "Total",
v_age = c(10, 25, 55, 75)),
regexp = paste('v_state must be a character element or vector containing at least one of the next names:',
paste(unique(df_mortrate_state_age_sex$state), collapse = ", "),
sep = "\n\n"))
# Not an exact match
expect_error(get_aging_rate(v_state = c("National", "Ags"), # Aguascalientes
v_year = 1999,
v_sex = "Total",
v_age = c(10, 25, 55, 75)),
regexp = paste('v_state must be a character element or vector containing at least one of the next names:',
paste(unique(df_mortrate_state_age_sex$state), collapse = ", "),
sep = "\n\n"))
# Not a character
expect_error(get_aging_rate(v_state = 65, # <- Numeric
v_year = 1999,
v_sex = "Total",
v_age = c(10, 25, 55, 75)),
regexp = paste('v_state must be a character element or vector containing at least one of the next names:',
paste(unique(df_mortrate_state_age_sex$state), collapse = ", "),
sep = "\n\n"))
# Multiple errors
expect_error(get_aging_rate(v_state = c("national", "Ags"), # Aguascalientes
v_year = 1999,
v_sex = "Total",
v_age = c(10, 25, 55, 75)),
regexp = paste('v_state must be a character element or vector containing at least one of the next names:',
paste(unique(df_mortrate_state_age_sex$state), collapse = ", "),
sep = "\n\n"))
})
### Year inputs -----------------------------------------------------------
test_that("year inputs are correct", {
# Outside bounds [1985, 2020]
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = 1905,
v_sex = "Total",
v_age = c(10, 25, 55, 75)),
regexp = "v_year must be a integer value or vector with values between 1985 and 2020")
# Not an integer
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = 1985.6,
v_sex = "Total",
v_age = c(10, 25, 55, 75)),
regexp = "v_year must be a integer value or vector with values between 1985 and 2020")
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = c(2000, 2010.6),
v_sex = "Total",
v_age = c(10, 25, 55, 75)),
regexp = "v_year must be a integer value or vector with values between 1985 and 2020")
# Not a number
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = "aa",
v_sex = "Total",
v_age = c(10, 25, 55, 75)),
regexp = "v_year must be a integer value or vector with values between 1985 and 2020")
})
### Sex inputs ------------------------------------------------------------
test_that("sex inputs are correct", {
# Not an exact match
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = c(2000, 2010, 2020),
v_sex = "Tot",
v_age = c(10, 25, 55, 75)),
regexp = "v_sex must be a character element or vector containing at least one of the next names: 'Female', 'Male', 'Total'")
# Not a character
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = c(2000, 2010, 2020),
v_sex = 55,
v_age = c(10, 25, 55, 75)),
regexp = "v_sex must be a character element or vector containing at least one of the next names: 'Female', 'Male', 'Total'")
# Multiple errors
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = c(2000, 2010, 2020),
v_sex = c(55, "Fem"),
v_age = c(10, 25, 55, 75)),
regexp = "v_sex must be a character element or vector containing at least one of the next names: 'Female', 'Male', 'Total'")
})
### Age inputs -----------------------------------------------------------
test_that("Age inputs are correct", {
# Age inputs are not integers
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = c(2000, 2010, 2020),
v_sex = "Total",
v_age = 10.6),
regexp = "v_age must be a integer value or vector with values between 0 and 89")
# Age inputs out of bounds
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = c(2000, 2010, 2020),
v_sex = "Total",
v_age = -6),
regexp = "v_age must be a integer value or vector with values between 0 and 89")
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = c(2000, 2010, 2020),
v_sex = "Total",
v_age = 120),
regexp = "v_age must be a integer value or vector with values between 0 and 89")
# Multiple errors
expect_error(get_aging_rate(v_state = c("National", "Aguascalientes"),
v_year = c(2000, 2010, 2020),
v_sex = "Total",
v_age = c(-6, 15.6)),
regexp = "v_age must be a integer value or vector with values between 0 and 89")
})
## Correct outputs ---------------------------------------------------------
### All possible vars -----------------------------------------------------
test_that("the output is correct when all the available vars are selected", {
expect_silent(get_aging_rate(v_state = unique(df_births_INEGI$state),
v_year = seq(from = 1985, to = 2020, by = 1),
v_sex = unique(df_mortrate_state_age_sex$sex),
v_age = seq(from = 0, to = 89, by = 1)
)
)
})
### Correct dimensions ----------------------------------------------------
test_that("the ungrouped output has the correct dimensions", {
# Ungrouped
df_ar <- get_aging_rate(v_state = c("Guerrero", "Mexico City"),
v_year = seq(from = 1985, to = 2020, by = 1),
v_sex = unique(df_mortrate_state_age_sex$sex),
v_age = seq(from = 0, to = 89, by = 10)
)
years <- 36
states <- 2
sexes <- 3
ages <- 9
size <- years*states*sexes*ages
expect_equal(dim(df_ar)[1], size)
# Grouped by ages
df_ar <- get_aging_rate(v_state = c("Guerrero", "Mexico City"),
v_year = seq(from = 1985, to = 2020, by = 1),
v_sex = unique(df_mortrate_state_age_sex$sex),
v_age = seq(from = 0, to = 89, by = 10))
years_grp <- 36
states_grp <- 2
sexes_grp <- 3
age_grp <- 9
size_grp <- years_grp*states_grp*sexes_grp*age_grp
expect_equal(dim(df_ar)[1], size_grp)
# Only males
df_ar <- get_aging_rate(v_state = c("Guerrero", "Mexico City"),
v_year = seq(from = 1985, to = 2020, by = 1),
v_sex = "Male",
v_age = seq(from = 0, to = 89, by = 10))
sexes <- 1
size <- years*states*sexes*ages
expect_equal(dim(df_ar)[1], size)
# Only males and one year
df_ar <- get_aging_rate(v_state = c("Guerrero", "Mexico City"),
v_year = 2010,
v_sex = "Male",
v_age = seq(from = 0, to = 89, by = 10))
years <- 1
sexes <- 1
size <- years*states*sexes*ages
expect_equal(dim(df_ar)[1], size)
# Only males, one year and one age
df_ar <- get_aging_rate(v_state = c("Guerrero", "Mexico City"),
v_year = 2010,
v_sex = "Male",
v_age = 45)
years <- 1
sexes <- 1
ages <- 1
size <- years*states*sexes*ages
expect_equal(dim(df_ar)[1], size)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.