PLNfit_diagonal | R Documentation |
The function PLNLDA()
produces an instance of an object with class PLNLDAfit
.
This class comes with a set of methods, some of them being useful for the user:
See the documentation for the methods inherited by PLNfit()
, the plot()
method for
LDA visualization and predict()
method for prediction
PLNmodels::PLNfit
-> PLNfit_diagonal
nb_param
number of parameters in the current PLN model
vcov_model
character: the model used for the residual covariance
new()
Initialize a PLNfit
model
PLNfit_diagonal$new(responses, covariates, offsets, weights, formula, control)
responses
the matrix of responses (called Y in the model). Will usually be extracted from the corresponding field in PLNfamily-class
covariates
design matrix (called X in the model). Will usually be extracted from the corresponding field in PLNfamily-class
offsets
offset matrix (called O in the model). Will usually be extracted from the corresponding field in PLNfamily-class
weights
an optional vector of observation weights to be used in the fitting process.
formula
model formula used for fitting, extracted from the formula in the upper-level call
control
a list for controlling the optimization. See details.
clone()
The objects of this class are cloneable with this method.
PLNfit_diagonal$clone(deep = FALSE)
deep
Whether to make a deep clone.
PLNmodels::PLNfit
-> PLNmodels::PLNLDAfit
-> PLNLDAfit_spherical
vcov_model
character: the model used for the residual covariance
nb_param
number of parameters in the current PLN model
PLNmodels::PLNfit$optimize_vestep()
PLNmodels::PLNfit$predict_cond()
PLNmodels::PLNfit$print()
PLNmodels::PLNfit$update()
PLNmodels::PLNLDAfit$optimize()
PLNmodels::PLNLDAfit$plot_LDA()
PLNmodels::PLNLDAfit$plot_correlation_map()
PLNmodels::PLNLDAfit$plot_individual_map()
PLNmodels::PLNLDAfit$postTreatment()
PLNmodels::PLNLDAfit$predict()
PLNmodels::PLNLDAfit$setVisualization()
PLNmodels::PLNLDAfit$show()
new()
Initialize a PLNfit
model
PLNLDAfit_spherical$new( grouping, responses, covariates, offsets, weights, formula, control )
grouping
a factor specifying the class of each observation used for discriminant analysis.
responses
the matrix of responses (called Y in the model). Will usually be extracted from the corresponding field in PLNfamily-class
covariates
design matrix (called X in the model). Will usually be extracted from the corresponding field in PLNfamily-class
offsets
offset matrix (called O in the model). Will usually be extracted from the corresponding field in PLNfamily-class
weights
an optional vector of observation weights to be used in the fitting process.
formula
model formula used for fitting, extracted from the formula in the upper-level call
control
a list for controlling the optimization. See details.
clone()
The objects of this class are cloneable with this method.
PLNLDAfit_spherical$clone(deep = FALSE)
deep
Whether to make a deep clone.
## Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1, data = trichoptera)
class(myPLN)
print(myPLN)
## End(Not run)
## Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, data = trichoptera, control = PLN_param(covariance = "spherical"))
class(myPLNLDA)
print(myPLNLDA)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.