#' @title Log-likelihood Hessian
#'
#' @description This function compute the hessian matrix of the log-likelihood
#' function given the data and the covariates
#'
#' @param par The point in which the hessian matrix has to be computed
#' @param data The matrix of the observed data
#' @param lista_phi The list containing all the matrices of covariates to model each \code{phi} element
#' @param lista_d The list containing all the matrices of covariates to model each \code{d} element
#' @param fnscale Scale coefficient: default value equal to \code{1}
#'
#' @return Hessian matrix of the log-likelihood function
#' @export
#'
#' @examples
#' data <- matrix(rnorm(300), ncol=3)
#' lista_d <- list()
#' lista_phi <- list()
#' lista_d[[1]] <- matrix(c(rep(1,100),rnorm(100)), byrow = FALSE, ncol=2)
#' lista_d[[2]] <- matrix(c(rep(1,100),rnorm(200)), byrow = FALSE, ncol=3)
#' lista_d[[3]] <- matrix(rep(1,100), byrow = FALSE, ncol=1)
#' lista_phi[[1]] <- matrix(c(rep(1,100),rnorm(200)),byrow = FALSE, ncol=3)
#' lista_phi[[2]] <- matrix(rep(1,100),ncol=1)
#' lista_phi[[3]] <- matrix(c(rep(1,100),rnorm(100)),byrow = FALSE, ncol=2)
#' par <- rnorm(12)
#' optimal_hessian(par,data,lista_phi,lista_d)
#'
#'
optimal_hessian <- function(par,data,lista_phi,lista_d, fnscale = 1){
# Information from the input
n <- nrow(data)
p <- ncol(data)
q <- p*(p-1)/2
l <- sum(unlist(lapply(lista_phi, ncol)))
r <- sum(unlist(lapply(lista_d, ncol)))
beta <- par[1:l]
lambda <- par[-c(1:l)]
# Definition of some useful lists and vectors that implement the idea of all the
# indicator functions
index_d <- list()
index_phi <- list()
count_d <- 1
count_phi <- 1
index_d[[1]] <- count_d:ncol(lista_d[[1]])
index_phi[[1]] <- count_phi:ncol(lista_phi[[1]])
for(j in 2:q){
if( j <= p){
count_d <- count_d + ncol(lista_d[[j-1]])
index_d[[j]] <- (count_d):(count_d + ncol(lista_d[[j]])-1)
count_phi <- count_phi + ncol(lista_phi[[j-1]])
index_phi[[j]] <- count_phi:(count_phi + ncol(lista_phi[[j]])-1)
}else{
count_phi <- count_phi + ncol(lista_phi[[j-1]])
index_phi[[j]] <- count_phi:(count_phi + ncol(lista_phi[[j]])-1)
}
}
idxn <- NULL
for(j in 2:p) idxn <- c(idxn,j*(j-1)/2)
phi_index_in_T <- list()
phi_index_in_T[[1]] <- 1
for(j in 2:(p-1)) phi_index_in_T[[j]] <- (idxn[j-1]+1):(idxn[j])
iv <- NULL
iy <- NULL
for(j in 1:length(phi_index_in_T)){
iv <- c(iv,rep(j+1, length(phi_index_in_T[[j]]) ) )
iy <- c(iy,1:length(phi_index_in_T[[j]]))
}
lista_app <- list() # Only used for the Beta-Beta Block
for (j in 1:length(phi_index_in_T)) {
app <- NULL
for (i in phi_index_in_T[[j]]) {
app <- c(app,index_phi[[i]])
}
lista_app[[j]] <- app
}
regressors <- NULL # We need this matrix for the Block Beta-Beta
for(i in 1:(length(lista_phi))) regressors <- cbind(regressors,lista_phi[[i]])
iy_update <- NULL # Only used for the Beta-Beta Block
iv_update <- NULL # Only used for the Beta-Beta Block
for (i in 1:length(phi_index_in_T)) {
for (j in 1:length(phi_index_in_T[[i]])) {
iy_update <- c(iy_update,rep(j,length(index_phi[[phi_index_in_T[[i]][j]]])))
iv_update <- c(iv_update,rep(i+1,length(index_phi[[phi_index_in_T[[i]][j]]])))
}
}
# Hessian Blocks Initialization
B_L_L <- matrix(rep(0,r^2),ncol = r) # Block with the partial derivative Lambda-Lambda
B_L_B <- matrix(rep(0,r*l),ncol = l) # Block with the partial derivative Lambda-Beta
B_B_B <- matrix(rep(0,l^2), ncol = l) # Block with the partial derivative Beta-Beta
for(i in 1:n){
# For all i we compute the vectors v, d^-1 and omega (w), that will be used to
# compute each hessian matrix block
v <- NULL
phi <- NULL
d <- NULL
for(j in 1:q){
if( j <= p){
phi <- c(phi,sum(lista_phi[[j]][i,]*beta[index_phi[[j]]]))
d <- c(d,sum(lista_d[[j]][i,]*lambda[index_d[[j]]]))
}else{
phi <- c(phi,sum(lista_phi[[j]][i,]*beta[index_phi[[j]]]))
}
}
d_m1 <- 1/sqrt(exp(d))
v <- data[i,1]
for (j in 2:p) {
ji <- 1+(j-1)*(j-2)/2
jf <- (j-1)+(j-1)*(j-2)/2
v <- c(v, data[i,j]+sum(data[i,1:(j-1)]*phi[ji:jf]))
}
w <- d_m1*v
# Block Lambda-Lambda iterative computation
for (j in 1:p) {
for (s in 1:ncol(lista_d[[j]])) {
for (h in 1:ncol(lista_d[[j]])) {
B_L_L[index_d[[j]][s],index_d[[j]][h]] <- B_L_L[index_d[[j]][s],index_d[[j]][h]] -
0.5* (d_m1[j]^2)*(v[j]^2)*lista_d[[j]][i,s]*lista_d[[j]][i,h]
}
}
}
# Block Lambda-Beta iterative computation
for (j in 1:q) {
for(s in 1:ncol(lista_d[[iv[j]]])){
for (t in 1:ncol(lista_phi[[j]])) {
B_L_B[index_d[[iv[j]]][s],index_phi[[j]][t]] <- B_L_B[index_d[[iv[j]]][s],index_phi[[j]]][t]+
w[iv[j]]*d_m1[iv[j]]*data[i,iy[j]]*lista_phi[[j]][i,t]*lista_d[[iv[j]]][i,s]
}
}
}
# Block Beta-Beta iterative computation
for (j in 1:(p-1)) {
for (u in lista_app[[j]]) {
for (z in lista_app[[j]]) {
B_B_B[u,z] <- B_B_B[u,z]-
regressors[i,u]*regressors[i,z]*data[i,iy_update[u]]*data[i,iy_update[z]]*(d_m1[iv_update[u]])^2
}
}
}
}
B_B_L <- t(B_L_B) # Block with the partial derivative Beta-Lambda (Schwarz Thm)
# Hessian matrix Assemblage
H <- rbind(cbind(B_B_B,B_B_L),cbind(B_L_B,B_L_L))
return(fnscale*H) # Using fnscale = -1, can be useful for optimization
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.