#' @title Log-likelihood Function
#'
#' @description This function compute the log-likelihood function value
#' given the data and the covariates
#'
#' @param par The point in which the log-likelihood has to be computed
#' @param data The matrix of the observed data
#' @param lista_phi The list containing all the matrices of covariates to model each \code{phi} element
#' @param lista_d The list containing all the matrices of covariates to model each \code{d} element
#' @param fnscale Scale coefficient: default value equal to \code{1}
#'
#' @return Log-Likelihood value
#' @export
#'
#' @examples
#' data <- matrix(rnorm(300), ncol=3)
#' lista_d <- list()
#' lista_phi <- list()
#' lista_d[[1]] <- matrix(c(rep(1,100),rnorm(100)), byrow = FALSE, ncol=2)
#' lista_d[[2]] <- matrix(c(rep(1,100),rnorm(200)), byrow = FALSE, ncol=3)
#' lista_d[[3]] <- matrix(rep(1,100), byrow = FALSE, ncol=1)
#' lista_phi[[1]] <- matrix(c(rep(1,100),rnorm(200)),byrow = FALSE, ncol=3)
#' lista_phi[[2]] <- matrix(rep(1,100),ncol=1)
#' lista_phi[[3]] <- matrix(c(rep(1,100),rnorm(100)),byrow = FALSE, ncol=2)
#' par <- rnorm(12)
#' optimal_loglik(par,data,lista_phi,lista_d)
#'
#'
optimal_loglik <- function(par,data,lista_phi,lista_d,fnscale = 1){
# Information from the input
n <- nrow(data)
p <- ncol(data)
q <- p*(p-1)/2
l <- sum(unlist(lapply(lista_phi, ncol)))
beta <- par[1:l]
lambda <- par[-c(1:l)]
# Definition of some useful lists and vectors that implement the idea of all the
# indicator functions
index_d <- list()
index_phi <- list()
count_d <- 1
count_phi <- 1
index_d[[1]] <- count_d:ncol(lista_d[[1]])
index_phi[[1]] <- count_phi:ncol(lista_phi[[1]])
for(j in 2:q){
if( j <= p){
count_d <- count_d + ncol(lista_d[[j-1]])
index_d[[j]] <- (count_d):(count_d + ncol(lista_d[[j]])-1)
count_phi <- count_phi + ncol(lista_phi[[j-1]])
index_phi[[j]] <- count_phi:(count_phi + ncol(lista_phi[[j]])-1)
}else{
count_phi <- count_phi + ncol(lista_phi[[j-1]])
index_phi[[j]] <- count_phi:(count_phi + ncol(lista_phi[[j]])-1)
}
}
# Log-likelihood components initialization
cs <- NULL # Vector for the linear form piece in lambda
for( j in 1:p) cs <- c(cs,colSums(lista_d[[j]]))
qf <- 0 # Quadratic form initialization
for(i in 1:n){
# For all i we compute the vectors v, d^-1 and omega (w), that will be used to
# compute iteratively the quadratic form piece of the Log-Likelihood
v <- NULL
phi <- NULL
d <- NULL
for(j in 1:q){
if( j <= p){
phi <- c(phi,sum(lista_phi[[j]][i,]*beta[index_phi[[j]]]))
d <- c(d,sum(lista_d[[j]][i,]*lambda[index_d[[j]]]))
}else{
phi <- c(phi,sum(lista_phi[[j]][i,]*beta[index_phi[[j]]]))
}
}
d_m1 <- 1/sqrt(exp(d))
v <- data[i,1]
for (j in 2:p) {
ji <- 1+(j-1)*(j-2)/2
jf <- (j-1)+(j-1)*(j-2)/2
v <- c(v, data[i,j]+sum(data[i,1:(j-1)]*phi[ji:jf]))
}
qf <- qf + sum((d_m1*v)^2)
}
ll <- -0.5*(sum(lambda*cs)+qf) # Final log-likelihood value
return(fnscale*ll) # Using fnscale = -1, can be useful for optimization
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.