R/prepPlotIMM.R

Defines functions prepPlotIMM

Documented in prepPlotIMM

#' Makes Index of Mediated Moderated plots 
#'
#' @param data data frame containg the variables of the model
#' @param xvar predictor variable name
#' @param yvar depedendent variable name
#' @param mod moderator name
#' @param mvars vector of mediators names
#' @param parEst parameter estimates from lavaan results
#' @param vdichotomous indicates whether moderator is dichotomous (TRUE)
#' @param modLevels levels of dichotomous moderator
#' @param path which path is used
#' @import ggplot2
#' @return empty, directly plots all simple slopes and all indices of mediation
#' @export

prepPlotIMM <- function(data,xvar,yvar,mod, mvars, parEst, vdichotomous,
                              modLevels, path = NULL) {
  
  xquant <- stats::quantile(data[,xvar], c(.16,.84), na.rm = TRUE)
  yquant <- stats::quantile(data[,yvar], c(.16,.84), na.rm = TRUE)
  
  # compute simple slopes

    if (vdichotomous) {
       modquant <- c(0,1)
       ifelse(is.null(modLevels), legendLabel <- c(0,1), legendLabel <- modLevels)
    } else {
       modquant <- stats::quantile(data[,mod], c(.16,.84), na.rm = TRUE)
       legendLabel <- c("16th percentile", "84th percentile")
    }

  if (path == "x-m") {
    vorw <- "w"
    inter <- "im"
    modmed <- "modmedx"
  } else {
    vorw <- "v"
    inter <- "iy"
    modmed <- "modmedm"
  }
  
  ind <- subset(parEst, grepl("ind", parEst$label))[,c("ci.lower","est","ci.upper")]
  vw <- subset(parEst, grepl(vorw, parEst$label))[,c("ci.lower","est","ci.upper")]
  int <- subset(parEst, grepl(inter, parEst$label))[,c("ci.lower","est","ci.upper")]
  mm <- subset(parEst, grepl(modmed, parEst$label))[,c("ci.lower","est","ci.upper")]
  
  bw <- subset(parEst, grepl("bw", parEst$label))[,c("ci.lower","est","ci.upper")]
  gw <- subset(parEst, grepl("gw", parEst$label))[,c("ci.lower","est","ci.upper")]
  
  N <- dim(data)[1]
  
  if (vorw == "v") bw <- (matrix(as.numeric(vw), nrow=length(mvars), ncol = 3, byrow = TRUE ))
    
  

  # initialize data for index mediated moderation
 
  plotData <- data.frame(X1 = numeric(),X2 = numeric(),X3 = numeric(), 
                         moderator = numeric(), 
                         mediator = factor())
  moderator <- as.numeric(data[,mod])
  

  # loop over mediators 
  
  for (i in seq_along(mvars)) {

   # index of moderated mediation
      
        d1 <-  matrix(as.numeric(ind[i,]), nrow = N, ncol=3, byrow = TRUE)  
        d2 <- (moderator %o% as.numeric(mm[i,]))
        yIom <- d1+ d2
      mediator <- rep(mvars[i],nrow(data))
      plotDat0 <- data.frame(yIom,moderator,mediator);
      plotData <- rbind(plotData,plotDat0)

     }  # loop mvars

    
  names(plotData) <- c("IMM_lwr",'IMM',"IMM_upr", mod, "mediator")
  ymin <- min(plotData$IMM,plotData$IMM_lwr,plotData$IMM_upr, yquant, na.rm = TRUE)
  ymax <- max(plotData$IMM,plotData$IMM_lwr,plotData$IMM_upr, yquant, na.rm = TRUE)
  
  
  if (!vdichotomous) {
 
      plot_indexOfmediation <- ggplot(plotData, aes_string(x=mod,y="IMM",colour = "mediator")) +
       geom_line(aes(colour = mediator, group = mediator)) +      
       coord_cartesian(ylim=c(ymin, ymax)) +
       ggtitle("Index of moderated mediation") +
       xlab(paste0("Moderator: ",mod))
      
      plot_indexOfmediation <- plot_indexOfmediation + 
        geom_ribbon(aes(ymin=plotData$IMM_lwr, ymax=plotData$IMM_upr), alpha=.3, linetype=0) 
    
      print(plot_indexOfmediation)
  }
  
  if (vdichotomous) {
    
    pd <- position_dodge(0.1)
    
    plotData[,mod] <- as.factor(plotData[,mod])
    levels(plotData[,mod]) <- legendLabel
    
    plot_indexOfmediation <- ggplot(plotData, aes_string(x=mod,y="IMM",colour = "mediator")) +
      geom_point(aes(colour = mediator), position = pd, size=2) +  
      geom_errorbar(aes(ymin=plotData$IMM_lwr, ymax=plotData$IMM_upr), width=0.2, size=0.5, position = pd) +
      coord_cartesian(ylim=c(ymin, ymax)) +
      ggtitle("Index of moderated mediation") +
      xlab(paste0("Moderator: ",mod)) 

    print(plot_indexOfmediation)
  }
  
  
  return()

} # end function
PeterVerboon/gemm documentation built on Aug. 6, 2019, 12:46 p.m.