# Tests of the package
# required tools ------
library(tidyverse)
library(generics)
library(exda)
explore <- exda::explore
# behavior of the EDA objects
test1 <- eda(c(rep('a', 10), rep('b', 5), rep('c', 3)))
test2 <- eda(c(rep('a', 5), rep('b', 5), rep('c', 8)))
test5 <- eda(c(rep('a', 1), rep('b', 2), rep('d', 8), NA))
summary(test5, pub_styled = TRUE)
summary(distribution(test1, test2))
summary(correlation(test1, test2, type = 'kappa'), pub_styled = TRUE)
covariance(test1, test2)
#variance(test1, test2)
summary(test(test2, test5, type = 'chisq_test'), pub_styled = TRUE)
test3 <- eda(sort(c(NA, rnorm(100))))
test4 <- eda(sort(c(rt(100, df = 10), NA)))
test6 <- eda(sort(c(rchisq(100, df = 10), NA)))
summary(test3)
summary(eda(c(NA, rnorm(100))), pub_styled = TRUE)
summary(normality(test3), pub_styled = TRUE)
normality(test4)
summary(distribution(test3, test4), pub_styled = TRUE)
summary(correlation(test3, test4, type = 'kendall'), pub_styled = TRUE)
#as_tibble(test3)
variance(test3, test4)
covariance(test3, test4, 'kendall')
summary(test(test3, test4, test6, type = 'friedman_test', ci = FALSE),
pub_styled = TRUE,
signif_digits = 2,
simplify_p = TRUE)
plot(test6, type = 'hist')
# Descriptive stats and hypothesis testing -------
explore(mtcars, what = 'table', signif_digits = 4)
explore(data = mtcars, split_factor = 'am', what = 'plots', type = 'violin')
explore(data = mtcars, split_factor = 'am', what = 'table')
compare_variables(mtcars[1:10, ], mtcars[11:20, ], mtcars[21:32, ],
variables = c('mpg', 'disp', 'wt', 'qsec'),
what = 'test',
types = 'anova',
pub_styled = TRUE,
adj_method = 'holm')
compare_variables(mtcars[1:10, ], mtcars[11:20, ], mtcars[21:32, ],
variables = 'mpg',
what = 'correlation',
types = 'pearson')
new_cars <- mtcars %>%
as_tibble %>%
mutate(vs = factor(vs),
am = factor(am),
gear = factor(gear),
grouping = sample(c('a', 'b'), 32, replace = TRUE),
corr_grouping = rep(c('c', 'd'), 16))
exda:::compare(new_cars, variable = 'gear', split_factor = 'vs', type = 'kruskal_test')
compare_variables(new_cars[1:10, ], new_cars[11:20, ], new_cars[21:30, ],
variables = c('mpg', 'vs', 'gear', 'am'),
what = 'correlation',
types = c('pearson', 'kendall', 'kendall', 'kendall'))
compare_variables(new_cars[1:10, ], new_cars[11:20, ], new_cars[21:30, ],
variables = c('mpg', 'vs', 'gear', 'am', 'qsec', 'hp', 'carb'),
what = 'test',
types = c('mann_whitney_test', 'chisq_test', 'kruskal_test',
'chisq_test', 'rm_anova', 'kruskal_test', 'friedman_test'),
pub_styled = TRUE,
adj_method = 'holm',
.parallel = TRUE,
.paropts = furrr::furrr_options(seed = TRUE, globals = c('new_cars')))
compare_variables(new_cars,
variables = c('mpg', 'vs', 'gear', 'am', 'qsec', 'hp', 'carb'),
split_factor = 'gear',
types = c('mann_whitney_test', 'chisq_test', 'chisq_test',
'chisq_test', 'anova', 'kruskal_test', 'anova'),
pub_styled = TRUE,
adj_method = 'holm',
ci = FALSE)
# Plotting ---------
## via multiplot
multiplot(test1, test2, test5,
type = 'bar',
eda_names = c('t1', 't2', 't3'),
scale = 'percent')
multiplot(test3, test4, test6,
type = 'paired',
eda_names = c('t1', 't2', 't3'),
bins = 10,
facet_hist = 'vertical')
## plotting via plot_variable
plot_variable(new_cars[1:10, ], new_cars[11:20, ], new_cars[21:30, ],
variable = 'mpg',
type = 'correlation')
plot_variable(new_cars[1:10, ], new_cars[11:20, ], new_cars[21:30, ],
variable = 'mpg',
type = 'violin')
plot_variable(new_cars, variable = 'mpg',
split_factor = 'gear', type = 'violin')
plot_variable(new_cars, variable = 'mpg',
split_factor = 'corr_grouping', type = 'correlation')
# Correlations --------
correlate_variables(new_cars[1:16, ],
new_cars[17:32, ],
variables = c('mpg', 'hp', 'qsec'),
what = 'correlation',
type = 'spearman')
correlate_variables(new_cars[1:16, ],
new_cars[17:32, ],
variables = c('vs', 'am', 'qsec'),
what = 'correlation',
type = 'kappa')
plot_correlation(new_cars,
variables = c('vs', 'am'),
type = 'bar',
scale = 'percent')
multiplot(test1, test2, test5,
type = 'bubble',
eda_names = c('t1', 't2', 't3'),
scale = 'none')
#multiplot(test1, eda(c(rep('e', 6), rep('a', 6), rep('b', 5), NA)),
# type = 'bubble',
# eda_names = c('t1', 't5'),
# scale = 'percent')
plot_correlation(new_cars,
variables = c('vs', 'am'),
type = 'bubble',
scale = 'none')
# Effect size --------
eff_size(test1, test2, type = 'freeman_theta',
ci = FALSE, boot_method = 'bca')
eff_size(test1, test5,
type = 'cramer_v', ci = TRUE)
eff_size(test1, test2,
type = 'cramer_v', ci = TRUE)
eff_size(test3, test4,
type = 'paired_cohen_d')
eff_size(test3, test6,
type = 'paired_wilcoxon_r',
ci = TRUE,
boot_method = 'normality')
eff_size(test1, test2, test5,
type = 'cohen_kappa')
eff_size(test3, test4, test6,
type = 'kendall_w')
compare_variables(new_cars,
what = 'eff_size',
variables = c('mpg', 'vs', 'gear', 'am',
'qsec', 'hp', 'carb'),
split_factor = 'gear',
types = c('wilcoxon_r', 'cramer_v', 'cramer_v',
'cramer_v', 'etasq', 'kruskal_etasq', 'etasq'),
pub_styled = TRUE,
adj_method = 'holm',
ci = FALSE)
test_eff <- compare_variables(new_cars[1:16, ],
new_cars[17:32, ],
variables = c('vs', 'am', 'qsec'),
what = 'eff_size',
types = c('cohen_kappa', 'cramer_v',
'paired_cohen_d'))
# Additional plotting options: stack plot -------
plot(test_eff, show_labels = 'signif')
multiplot(test1, test2, test5,
type = 'stack',
eda_names = c('t1', 't2', 't3'),
scale = 'percent')
plot_variable(new_cars[1:10, ], new_cars[11:20, ], new_cars[21:30, ],
variable = 'gear',
type = 'bar')
plot_variable(new_cars[1:10, ], new_cars[11:20, ], new_cars[21:30, ],
variable = 'gear',
type = 'stack')
plot_variable(new_cars,
variable = 'gear',
split_factor = 'grouping',
type = 'stack',
scale = 'fraction')
# Plot panels -------
draw_quantile_elli(mtcars,
quantiles = c(0.025, 0.975),
variables = c('disp', 'wt', 'hp'))
draw_quantile_elli(dplyr::mutate(mtcars, vs = factor(vs, c('1', '0'))),
quantiles = c(0.025, 0.975),
variables = c('disp', 'wt', 'hp'),
split_factor = 'vs')
draw_violin_panel(mtcars,
variables = c('disp', 'hp'))
draw_violin_panel(dplyr::mutate(mtcars, vs = factor(vs, c('0', '1'))),
variables = c('disp', 'hp'),
split_factor = 'vs',
distr_geom = 'box',
alpha = 1)
draw_stat_panel(dplyr::mutate(mtcars,
gear_fct = factor(gear, c(4, 5, 3)),
vs = factor(vs, c('1', '0'))),
variables = c('disp', 'hp', 'wt', 'mpg', 'qsec', 'carb'),
stat = 'mean',
split_factor = 'vs',
err_stat = '2se',
form = 'line')
plot_variable(dplyr::mutate(mtcars,
gear_fct = factor(gear, c(4, 5, 3)),
vs = factor(vs, c('1', '0'))),
split_factor = 'vs',
variable = 'gear_fct',
type = 'stack',
scale = 'percent',
txt_color = 'orangered3')
plot_variable(dplyr::mutate(mtcars,
gear_fct = factor(gear, c(4, 5, 3)),
vs = factor(vs, c('1', '0'))),
split_factor = 'vs',
variable = 'mpg',
type = 'violin',
scale = 'percent',
txt_color = 'orangered3')
draw_freq_panel(dplyr::mutate(mtcars,
gear_fct = factor(gear, c(4, 5, 3)),
vs = factor(vs, c('1', '0')),
am = factor(am, c('1', '0'))),
#split_factor = 'cyl',
variables = c('vs', 'am'),
show_labels = TRUE)
# Testing the 'x_n_labs' option: n numbers in the X axis ---------
plot_variable(dplyr::mutate(mtcars,
gear_fct = factor(gear, c(4, 5, 3)),
vs = factor(vs, c('1', '0'))),
split_factor = 'vs',
variable = 'mpg',
type = 'violin',
scale = 'percent',
txt_color = 'orangered3',
x_n_labs = TRUE)
plot_variable(new_cars,
variable = 'gear',
split_factor = 'grouping',
type = 'stack',
scale = 'fraction',
x_n_labs = TRUE)
plot_variable(new_cars,
variable = 'gear',
split_factor = 'grouping',
type = 'bar',
scale = 'fraction',
x_n_labs = TRUE)
plot_variable(new_cars,
variable = 'wt',
split_factor = 'corr_grouping',
type = 'paired',
x_n_labs = TRUE)
# END ------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.