Description Usage Arguments Value Examples
graphical model model evaluation using QDA as a classifier
| 1 2 | 
| train | a list of training data | 
| valid | a list of validation data | 
| test | a list of test data | 
| lambda_range | a vector of lambda values to train to given method, eg c(0.1,0.2,0.3) | 
| v_seeking_length | second hyperparameter length, default to 10 | 
| method | name of the method to be evaluated | 
| ... | optional parameters passed to your method from JointNets package | 
covriance matrix / kendall tau correlation matrix
| 1 2 3 4 5 6 7 8 9 10 | library(JointNets)
data("nip_37_data")
split = train_valid_test_split(nip_37_data,c(0.8,0.1,0.1),10000)
train = split[["train"]]
valid = split[["valid"]]
test = split[["test"]]
v_seeking_length = 2
lambda_range = seq(0.5,1, length.out = 2)
result = QDA_eval(train,valid,test,lambda_range, v_seeking_length, method = "diffee")
result[["best test accuracy"]]
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.