#' onechange Pruned Exact Linear Time
#'
#'
#' @description Pruned Exact Linear Time Algorithm for time series with 0/1 changepoint
#'
#' @param data vector of data points
#' @param cost a number
#' @param beta a number
#'
#' @return a changepoint, a global cost
#' @export
#'
#' @examples
#' onechangePELT(c(0,0,0,1,1,1,1), beta = 0.00001)
#' onechangePELT(c(rnorm(50, mean = 0, sd = 1), rnorm(50, mean = 10, sd = 1)))
#' onechangePELT(data_generator(25, chpts = 10, means = c(20,0), type = "gauss"), beta = 5)
onechangePELT <- function(data, cost = "bernoulli", beta = best_beta(data))
{
allowed.cost <- c("gauss", "poisson", "negbin", "bernoulli")
if(!cost %in% allowed.cost){stop('type must be one of: ', paste(allowed.cost, collapse=", "))}
if (cost == "gauss") {cost_f <- cost_gauss}
else if (cost == "poisson") {cost_f <- cost_poiss}
else if (cost == "negbin")
{
cost_f <- cost_negbin
}
else if (cost == 'bernoulli') {cost_f <- cost_bernoulli}
n <- length(data)
cp <- rep(0,n)
Q <- rep(0,n)
R <- NULL
for (t in 2:n)
{
val_min <- cost_f(data[1:t])
arg_min <- 0
R <- c(R,t)
for (s in R)
{
a <- Q[s-1] + cost_f(data[s:t]) + beta
if (a < val_min)
{
val_min <- a
arg_min <- s - 1
}
}
Q[t] <- val_min
cp[t] <- arg_min
for (s in R){
if (Q[t] <= Q[s-1] + cost_f(data[s:t])){
R <- R[R!= s]}}
}
#backtracking
v <- cp[n]
P <- cp[n]
while (v > 0)
{
P <- c(P, cp[v])
v <- cp[v]
}
P <- rev(P)[-1]
#selection of the minimal changepoint
val_min <- +Inf
for (i in P)
{
a <- cost_f(data[1:i]) + cost_f(data[(i+1):n]) + beta
if (a < val_min)
{
val_min <- a
arg_min <- i
}
}
if(arg_min == 2){rupt <- NULL} else {rupt <- arg_min} # Si on detecte le min en 2 alors c'est des données sans ruptures car ca impliquerait que l'on ai un saut en 1 or c'est la premiere donnée
return(list(tau = rupt, globalCost = Q[n] - beta))
}
#' Pruned Exact Linear Time
#'
#'
#' @description Pruned Exact Linear Time Algorithm
#'
#' @param data vector of data points
#' @param cost a number
#' @param beta a number
#'
#' @return a vector of changepoints, a global cost
#' @export
#'
#' @examples
#' myPELT(c(0,0,1,1,0,0,0), beta = 0.00001)
#' myPELT(c(rnorm(50, mean = 0, sd = 1), rnorm(50, mean = 10, sd = 1)), beta = 1)
#' myPELT(data_generator(25, chpts = c(10,20), means = c(20,0,20), type = "gauss"), beta = 5)
myPELT <- function(data, cost = "bernoulli", beta = best_beta(data))
{
allowed.cost <- c("gauss", "poisson", "negbin", "bernoulli")
if(!cost %in% allowed.cost){stop('type must be one of: ', paste(allowed.cost, collapse=", "))}
if (cost == "gauss") {cost_f <- cost_gauss}
else if (cost == "poisson") {cost_f <- cost_poiss}
else if (cost == "negbin")
{
cost_f <- cost_negbin
}
else if (cost == 'bernoulli') {cost_f <- cost_bernoulli}
n <- length(data)
cp <- rep(0,n)
Q <- rep(0,n)
R <- NULL
for (t in 2:n)
{
val_min <- cost_f(data[1:t])
arg_min <- 0
R <- c(R,t)
for (s in R)
{
a <- Q[s-1] + cost_f(data[s:t]) + beta
if (a < val_min)
{
val_min <- a
arg_min <- s - 1
}
}
Q[t] <- val_min
cp[t] <- arg_min
for (s in R){
if (Q[t] <= Q[s-1] + cost_f(data[s:t])){
R <- R[R!= s]}}
}
#backtracking
v <- cp[n]
P <- cp[n]
while (v > 0)
{
P <- c(P, cp[v])
v <- cp[v]
}
P <- rev(P)[-1]
return(list(changepoints = P, globalCost = Q[n] - length(P)*beta))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.