library(BalancedSampling)
library(sampling)
library(WaveSampling)
library(pracma)
library(MASS)
rm(list=ls())
user <- c('setille\\switchdrive\\__PROJETS_DE_RECHERCHE\\',
'eustachee\\switchdrive\\',
'jauslinr\\switchdrive\\')[3]
# #---------LOADING PACKAGE---------#
# setwd(paste0('C:\\Users\\',user,'SpatioTempo\\SpotSampling\\'))
# devtools::load_all()
#
#
# #----------------DATA LIBELLULE---------------#
#-----Suisse
data <- read.csv(file = paste0('C:\\Users\\',user,'Spatio-temporal\\simulations\\',"data_square_lib.csv"), sep = ',')
#-----Mitteland
data <- read.csv(file = paste0('C:\\Users\\',user,'Spatio-temporal\\simulations\\',"mitteland_square_lib.csv"), sep = ',')
df <- data
coord <- as.matrix(df[,1:2])
interest <- df[,3]
N <- nrow(df)
set.seed(1)
N_new <- 500
ind <- sample(seq(1,N,1),N_new)
N <- N_new
df <- df[ind,]
coord <- coord[ind,]
# #--------INCLUSION PROBABILITIES-----------#
t <- 3
Pik <- matrix(rep(0, t*N), ncol = t)
n1 <- N/3
n2 <- N/5
n3 <- N/7
Pik[,1] <- rep(n1/N,N)
Pik[,2] <- inclusionprobabilities(df[,4],n2)
Pik[,3] <- inclusionprobabilities(df[,3],n3)
system.time(test <- Orfs(Pik,arma = TRUE))
system.time(test <- Orfs(Pik,arma = FALSE))
#--------SIMULATIONs-----------#
nbSimu <- 5
RESULT.IB.SIMPLE <- rep(0, nbSimu)
RESULT.IB.SPOT <- rep(0, nbSimu)
RESULT.IB.XIAMEN <- rep(0, nbSimu)
RESULT.sb.SIMPLE <- rep(0, nbSimu)
RESULT.sb.SPOT <- rep(0, nbSimu)
RESULT.sb.XIAMEN <- rep(0, nbSimu)
for(j in 1:nbSimu){
n <- colSums(Pik)
#----------METHOD NEUCH---------------#
#--Preselection
# Pik.new <- Preselection(Pik = Pik, coord = coord, L = 1)
# Pik.remain <- Pik.new[rowSums(Pik.new)>1e-7,]
# coord.remain <- coord[rowSums(Pik.new)>1e-7,]
#--Method SPOT
A1 <- Orfs(Pik.remain)
A1.tot <- matrix(rep(0,N*t), nrow = N, ncol = t)
A1.tot[rowSums(Pik.new)>1e-7,] <- A1
#--Method ORFS
A2 <- Orsp(Pik.remain, coord.remain)
A2.tot <- matrix(rep(0,N*t), nrow = N, ncol = t)
A2.tot[rowSums(Pik.new)>1e-7,] <- A2
#--Method ORSP
A3 <- Spot(Pik.remain, coord.remain)
A3.tot <- matrix(rep(0,N*t), nrow = N, ncol = t)
A3.tot[rowSums(Pik.new)>1e-7,] <- A3
#----------METHOD XIAMEN---------------#
setwd(paste0('C:\\Users\\',user,'Spatio-temporal\\simulations\\'))
source("function.R")
B <- Xiamen(Pik, coord, 1)
#-------PLOT
SpreadPlot(A.tot, 1:4, IB, coord)
SpreadPlot(rep(1,nrow(coord)), 1, IB, coord)
SpreadPlot <- function(samples, time, criteria = c(IB,sb), coord){
library(pracma)
par(mfrow=c(ceil(length(time)/2),2))
for(t in 1:length(time)){
i <- time[t]
plot(coord[,1], coord[,2], cex = 0.5)
points(coord[samples[,i]==1,1],coord[samples[,i]==1,2], col = 'blue', pch = 19, cex = 0.5)
}
}
#------- TEST ETALEMENT
sb.simple <- rep(0,t)
sb.Spot <- rep(0,t)
sb.Xiamen <- rep(0,t)
IB.simple <- rep(0,t)
IB.Spot <- rep(0,t)
IB.Xiamen <- rep(0,t)
for(i in 1:t){
#IB
m.strat <- wpik(X = coord, pik = Pik[,i])
m.strat <- m.strat-diag(diag(m.strat), nrow = nrow(m.strat), ncol = ncol(m.strat))
IB.simple[i] <- IB(W = m.strat, s = A.tot[,i])
IB.Spot[i] <- IB(W = m.strat, s = srswor(n[i], N))
IB.xiamen[i] <- IB(W = m.strat, s = B.tot[,i])
#sb
sb.simple[i] <- sb(Pik[,i], coord, (1:N)[A.tot[,i]==1])
sb.Spot[i] <- sb(Pik[,i], coord, (1:N)[srswor(n, N)==1])
sb.xiamen[i] <- sb(Pik[,i], coord, (1:N)[B.tot[,i]==1])
}
RESULT.IB.SIMPLE[j] <- mean(IB.simple)
RESULT.IB.SPOT[j] <- mean(IB.Spot)
RESULT.IB.XIAMEN[j] <- mean(IB.xiamen)
RESULT.sb.SIMPLE[j] <- mean(sb.simple)
RESULT.sb.SPOT[j] <- mean(sb.Spot)
RESULT.sb.XIAMEN[j] <- mean(sb.xiamen)
}
#--------------PLOT------------#
path <- paste0('C:\\Users\\',user,'Spatio-temporal\\simulations\\\\ggg_2019-LV03\\shp')
plotSwiss(X = data, Xs = data[A==1,], Region = c(2), Canton = TRUE, Commune = FALSE, path = path)
plotSwiss(X = data, Xs = NULL, Region = c(2), Canton = TRUE, Commune = FALSE, path = path)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.