prepare_sample_result_matrix_NMF = function(
deconvolution_results,
prediction_stats_list,
deconvolution_data,
models_list
){
rounding_precision = 1
#models = as.character(unlist(str_split(
# deconvolution_results$Model[1],pattern = "\\|")))
# deconvolution_results[,"R_sqr_dif"] = rep("",nrow(deconvolution_results))
deconvolution_results[,"Strength_subtype"] = rep(
"",nrow(deconvolution_results))
deconvolution_results[,"Subtype"] = rep("",nrow(deconvolution_results))
###
res_cor = prediction_stats_list[[1]]
res_cor[ is.na(res_cor) ] = 0.0
cands_dif_1 = c("alpha","beta","gamma","delta","acinar","ductal")
if("hisc" %in% colnames(deconvolution_results)){
cands_dif_2 = "hisc"
} else {
cands_dif_2 = c("acinar","ductal")
}
deconvolution_results[,"Confidence_score_dif"] = rep(
"",nrow(deconvolution_results))
deconvolution_results[,"Confidence_score_dif"] = round(
abs(as.double(res_cor)),rounding_precision)
cands_dif = cands_dif_1[
(cands_dif_1 %in% colnames(deconvolution_results)) &
!(cands_dif_1 %in% cands_dif_2)
]
for( j in 1:ncol(deconvolution_data)){
max_subtype = colnames(deconvolution_results[cands_dif])[
which.max(deconvolution_results[j,cands_dif])
]
subtype_strength = deconvolution_results[j,max_subtype] /
sum(deconvolution_results[j,cands_dif])
if (sum(deconvolution_results[j,cands_dif]) == 0)
subtype_strength = deconvolution_results[j,max_subtype]
subtype_strength = round(subtype_strength * 100,rounding_precision)
deconvolution_results[j,"Strength_subtype"] =
subtype_strength
if (subtype_strength == 0)
max_subtype = "not_significant"
deconvolution_results[j,"Subtype"] = max_subtype
}
deconvolution_results[,"Differentiation_score"] = rep(
"",nrow(deconvolution_results))
deconvolution_results[,"Differentiation_score"] = round(
res_cor,rounding_precision)
### de dif
res_cor = prediction_stats_list[[2]]
res_cor[ is.na(res_cor) ] = 0.0
deconvolution_results[,"Strength_de_differentiation"] = rep(
"",nrow(deconvolution_results))
deconvolution_results[,"Confidence_score_de_dif"] = rep(
"",nrow(deconvolution_results))
deconvolution_results[,"Confidence_score_de_dif"] = round(
abs( as.double(res_cor) ),rounding_precision)
for( j in 1:ncol(deconvolution_data)){
de_strength = log( sum(deconvolution_results[j,cands_dif_2]) /
sum(deconvolution_results[j,cands_dif_2]) + 1)
if (sum(deconvolution_results[j,cands_dif_2]) == 0)
de_strength = 0
deconvolution_results[j,"Strength_de_differentiation"] =
round(as.double(de_strength),rounding_precision)
}
return(deconvolution_results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.