View source: R/111.ConfidenceIntervals_ADJ_n.R
| ciAAS | R Documentation |
Adjusted ArcSine method of CI estimation
ciAAS(n, alp, h)
n |
- Number of trials |
alp |
- Alpha value (significance level required) |
h |
- adding factor |
Wald-type interval for the arcsine transformation of the parameter
p for the modified data x + h and n + (2*h) , where
h > 0 and for all x = 0, 1, 2 ..n.
A dataframe with
x |
Number of successes (positive samples) |
LAAS |
Adjusted ArcSine Lower limit |
UAAS |
Adjusted ArcSine Upper Limit |
LABB |
Adjusted ArcSine Lower Abberation |
UABB |
Adjusted ArcSine Upper Abberation |
ZWI |
Zero Width Interval |
[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.
[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.
[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.
prop.test and binom.test for equivalent base Stats R functionality,
binom.confint provides similar functionality for 11 methods,
wald2ci which provides multiple functions for CI calculation ,
binom.blaker.limits which calculates Blaker CI which is not covered here and
propCI which provides similar functionality.
Other Adjusted methods of CI estimation:
PlotciAAS(),
PlotciAAllg(),
PlotciAAll(),
PlotciALR(),
PlotciALT(),
PlotciASC(),
PlotciATW(),
PlotciAWD(),
ciAAll(),
ciALR(),
ciALT(),
ciASC(),
ciATW(),
ciAWD()
n=5; alp=0.05;h=2 ciAAS(n,alp,h)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.