View source: R/111.ConfidenceIntervals_ADJ_n.R
| ciAAll | R Documentation |
CI estimation of 6 adjusted methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine) given adding factor
ciAAll(n, alp, h)
n |
- Number of trials |
alp |
- Alpha value (significance level required) |
h |
- adding factor |
The Confidence Interval using 6 adjusted methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine) for n given alp and h
A dataframe with
name |
- Name of the method |
x |
- Number of successes (positive samples) |
LLT |
- Lower limit |
ULT |
- Upper Limit |
LABB |
- Lower Abberation |
UABB |
- Upper Abberation |
ZWI |
- Zero Width Interval |
[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.
[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.
[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.
prop.test and binom.test for equivalent base Stats R functionality,
binom.confint provides similar functionality for 11 methods,
wald2ci which provides multiple functions for CI calculation ,
binom.blaker.limits which calculates Blaker CI which is not covered here and
propCI which provides similar functionality.
Other Adjusted methods of CI estimation:
PlotciAAS(),
PlotciAAllg(),
PlotciAAll(),
PlotciALR(),
PlotciALT(),
PlotciASC(),
PlotciATW(),
PlotciAWD(),
ciAAS(),
ciALR(),
ciALT(),
ciASC(),
ciATW(),
ciAWD()
n=5; alp=0.05;h=2 ciAAll(n,alp,h)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.