Description Usage Arguments Details Value References See Also Examples

View source: R/113.ConfidenceIntervals_ADJ_n_x.R

CI estimation of 6 adjusted methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine) given x and n

1 | ```
ciAAllx(x, n, alp, h)
``` |

`x` |
- Number of success |

`n` |
- Number of trials |

`alp` |
- Alpha value (significance level required) |

`h` |
- Adding factor |

The Confidence Interval of using 6 adjusted methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine) for `n`

given `alp`

, `x`

and `h`

A dataframe with

`name ` |
- Name of the method |

`x ` |
- Number of successes (positive samples) |

`LLT ` |
- Lower limit |

`ULT ` |
- Upper Limit |

`LABB ` |
- Lower Abberation |

`UABB ` |
- Upper Abberation |

`ZWI ` |
- Zero Width Interval |

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

`prop.test and binom.test`

for equivalent base Stats R functionality,
`binom.confint`

provides similar functionality for 11 methods,
`wald2ci`

which provides multiple functions for CI calculation ,
`binom.blaker.limits`

which calculates Blaker CI which is not covered here and
`propCI`

which provides similar functionality.

Other Adjusted methods of CI estimation given x & n: `PlotciAAllx`

,
`ciAASx`

, `ciALRx`

,
`ciALTx`

, `ciASCx`

,
`ciATWx`

, `ciAWDx`

1 2 | ```
x=5; n=5; alp=0.05;h=2
ciAAllx(x,n,alp,h)
``` |

RajeswaranV/proportion documentation built on May 9, 2017, 11:07 p.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.