View source: R/113.ConfidenceIntervals_ADJ_n_x.R
| ciAASx | R Documentation | 
Adjusted ArcSine method of CI estimation
ciAASx(x, n, alp, h)
x | 
 - Number of successes  | 
n | 
 - Number of trials  | 
alp | 
 - Alpha value (significance level required)  | 
h | 
 - Adding factor  | 
Wald-type interval for the arcsine transformation of the parameter p
for the modified data x + h and n + (2*h) , where h > 0 and for
the given x and n.
A dataframe with
x | 
 Number of successes (positive samples)  | 
LAASx  | 
 ArcSine Lower limit  | 
UAASx  | 
 ArcSine Upper Limit  | 
LABB  | 
 ArcSine Lower Abberation  | 
UABB  | 
 ArcSine Upper Abberation  | 
ZWI  | 
 Zero Width Interval  | 
[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.
[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.
[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.
prop.test and binom.test for equivalent base Stats R functionality,
binom.confint  provides similar functionality for 11 methods,
wald2ci which provides multiple functions for CI calculation ,
binom.blaker.limits which calculates Blaker CI which is not covered here and
propCI which provides similar functionality.
Other Adjusted methods of CI estimation  given x & n: 
PlotciAAllx(),
ciAAllx(),
ciALRx(),
ciALTx(),
ciASCx(),
ciATWx(),
ciAWDx()
x=5; n=5; alp=0.05;h=2 ciAASx(x,n,alp,h)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.