Description Usage Arguments Value Examples
Run function nestorFit on a list of initial cliques using parallel computation (mclapply)
1 2 3 4 5 6 7 8 9 10 11 12 | List.nestorFit(
cliqueList,
sigma_O,
MO,
SO,
r,
alpha = 0.1,
cores = 1,
maxIter = 20,
eps = 0.001,
trackJ = FALSE
)
|
cliqueList |
List containing all initial cliques to be tested. |
sigma_O |
Result of PLN estimation: variance covariance matrix of observed data. |
MO |
Result of PLN estimation: means matrix of observed data. |
SO |
Result of PLN estimation: marginal variances matrix of observed data. |
r |
Number of hidden variables. |
alpha |
Tempering parameter. |
cores |
Number of cores for parallel computation (uses mclapply, not available for Windows). |
maxIter |
Maximal number of iterations of the algorithm. |
eps |
Convergence precision parameter. |
trackJ |
Boolean for the lower bound estimation at each parameter update instead of each step. |
A list containing the fit of nestorFit for every clique contained in cliqueList.
1 2 3 4 5 6 7 8 9 10 11 12 13 | data=generate_missing_data(n=100,p=10,r=1,type="scale-free", plot=FALSE)
PLNfit<-norm_PLN(data$Y)
MO<-PLNfit$MO
SO<-PLNfit$SO
sigma_O=PLNfit$sigma_O
#-- find a list of initial cliques
findcliqueList=boot_FitSparsePCA(MO, B=5, r=1)
cliqueList=findcliqueList$cliqueList
length(cliqueList)
#-- run List.nestorFit
fitList=List.nestorFit(cliqueList, sigma_O, MO,SO, r=1)
length(fitList)
str(fitList[[1]])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.