Description Usage Arguments Value Examples
Initialize Sigma and Omega by taking the principal component of cliques as initial value for the hidden variables. The PCA is done on the correaltion matrix, the variance of hidden variables are set to the empirical variances of the pca. The corresponding precision term in omega is set to 1 for identifiability reasons.
1 |
Sigma |
variance-covariance matrix (p x p) |
cliqueList |
list of found cliques, given as vectorss of nodes indices |
cst |
small constant for positive definiteness |
Sigma0: initial value of complete covariance matrix ((p+r)x(p+r) matrix)
K0: initial value of complete precision matrix ((p+r)x(p+r) matrix)
clique: vector containing the indices of the nodes in the clique
1 2 3 4 | data=generate_missing_data(n=100,p=10,r=1,type="scale-free", plot=TRUE)
Sigma=data$Sigma
initClique=FitSparsePCA(data$Y,r=1)$cliques
initOmega(Sigma=Sigma, cliqueList=initClique)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.