kruskal_extended <- function(colours = standard_colours, ...){
## NB: everything here is (space,time). This is because it is easier to plot in R
constant_r_exterior <- colours$r
constant_t_exterior <- colours$t
constant_r_interior <- colours$t
constant_t_interior <- colours$r
## points from which to emit a ray of light (and draw spacelike
## curves of constant Schwarzschild r from):
r_emitting <- seq(from=1.05,len=4,to=2)
size <- 2
par(pty='m')
## plot commands start
plot(NULL, type='n', asp=1,
xlim=c(-size,size),ylim=c(-size,size),
axes=FALSE, xlab="", ylab="",
main="Extended Kruskal-Szekeres coordinates")
clip(-2,2,-2,2)
par(xpd=FALSE)
## First spacelike curves, exterior:
rt_ext <- as.matrix(expand.grid(
r = c(NA,seq(from=1,to=40,len=100)), # the NA is so we can just use plot(...,type='l')
t = seq(from=-4,to=4,len=9)
))
## plot curves of constant Schwarzschild r on the exterior:
jj <- TX(rt_ext,exterior=TRUE)
points(jj,type='l',lty=1,lwd=0.5,col=constant_r_exterior) # spacelike
## Antiuniverse:
jj[,1] <- -jj[,1]
points(jj,type='l',lty=1,lwd=0.5,col=constant_r_exterior) # spacelike
text(0,-2,"NB: lines of constant Schwarzschild r are timelike outside and spacelike inside")
## Now curves of constant Schwarzschild t, exterior:
rt_ext <- as.matrix(expand.grid(
t = c(NA,seq(from=-4,to=4,len=1000)),
r = r_emitting
))[,2:1]
jj <- TX(rt_ext,exterior=TRUE)
points(jj,type='l',lwd=0.5,lty=1,col=constant_t_exterior) # timelike
## Antiuniverse, curves of constant Schwarzschild t, exterior:
jj[,1] <- -jj[,1]
points(jj,type='l',lwd=0.5,lty=1,col=constant_t_exterior) # timelike
## Now spacelike (sic!) curves on the interior:
rt_int <- as.matrix(expand.grid(
r = c(NA,seq(from=0,to=1,len=300)),
t = seq(from=-4,to=4,len=9)
))
jj <- TX(rt_int,exterior=FALSE)
points(jj,type='l',lty=1,lwd=0.5,col = constant_t_interior)
## Antiuniverse:
jj[,2] <- -jj[,2]
points(jj,type='l',lty=1,lwd=0.5,col = constant_t_interior)
## Now timelike curves, interior
rt_int <- as.matrix(expand.grid(
t = c(NA,seq(from=-4,to=4,len=1000)),
r = #seq(from=0,to=1,len=10)
c(0.95, 0.8, 0.6, 0.4,0.1)
))[,2:1]
jj <- TX(rt_int,exterior=FALSE)
points(jj,type='l',lty=1,lwd=0.5,col=constant_r_interior)
## white hole:
jj[,2] <- -jj[,2]
points(jj,type='l',lty=1,lwd=0.5,col=constant_r_interior)
## light curves:
l <- 10
for(i in r_emitting){
X <- sqrt(i-1)*exp(i/2) # KS coordinate 'X'
segments(x0=X,y0=0, # start point
x1 = 0.5*(X-1/X), y1=-0.5*(-X-1/X), col=colours$ingoing_light) # ingoing
segments(x0=X,y0=0, # start point
x1=X+l,y1=X+10,col=colours$outgoing_light)
}
## light curve originating in the antiuniverse:
segments(x0=-1,y0=0,x1=0,y1=1,col=colours$ingoing_light)
segments(x0=-1,y0=0,x1=-2,y1=1,col=colours$outgoing_light)
## label some timelike curves on the exterior
if(FALSE){
text(0.53,-0.22,labels=paste("r = ",r_emitting[1],sep=""),col=colours$t,srt=-60)
text(1.33,-0.3,labels=paste("r = ",round(r_emitting[2],2),sep=""),col=colours$t,srt=-80)
text(2.05,-0.3,labels=paste("r = ",round(r_emitting[3],2),sep=""),col=colours$t,srt=-82)
## label some spacelike curves on the exterior
text(0.7,0.06,labels=paste("t = ",0,sep=""),col=colours$r,srt=0)
text(0.8,-0.3,labels=paste("t = ",-1,sep=""),col=colours$r,srt=-25)
text(1.1,-0.75,labels=paste("t = ",-2,sep=""),col=colours$r,srt=-35)
text(1.7,-1.45,labels=paste("t = ",-3,sep=""),col=colours$r,srt=-40)
text(1,0.53,labels=paste("t = ",1,sep=""),col=colours$r,srt=25)
text(1.1,0.9,labels=paste("t = ",2,sep=""),col=colours$r,srt=35)
## label some spacelike curves on the interior (constant t [sic])
text(0.05,0.5,labels=paste("t = ",0,sep=""),col=colours$r,srt=90)
text(0.22,0.6,labels=paste("t = ",1,sep=""),col=colours$r,srt=64)
text(0.60,0.9,labels=paste("t = ",2,sep=""),col=colours$r,srt=52)
## label some timelike curves on the interior (constant t [sic])
text(-0.39,0.6,labels=paste("r = ",0.95,sep=""),col=colours$t,srt=-35)
text(-0.1,0.74,labels=paste("r = ",0.8,sep=""),col=colours$t,srt=-10)
text(-0.4,0.9,labels=paste("r = ",0.6,sep=""),col=colours$t,srt=-22)
}
points(TX(cbind(r_emitting,0),exterior=TRUE),pch=16)
points(-1,0,pch=16)
par(lend=1)
if(FALSE){
legend(x=-2,y=0.6,lty=1,lwd=5, col=c(colours$horizon, "black"),
legend=c("horizon","singularity")
)
legend(x=-2,y=0,lty=1,lwd=1,
col=c(colours$ingoing_light,colours$outgoing_light),
legend=c("ingoing null geodesics","outgoing null geodesics")
)
legend(x=-2,y=-0.6,lty=1,lwd=0.5,
col=c(colours$r,colours$t),
legend=c("lines of constant Schwarzschild r",
"lines of constant Schwarzschild t")
)
}
## do some light cones:
jj <-TX(cbind(r_emitting,0),exterior=TRUE)
cone(jj[1,1],jj[1,2],pi/4,pi/4,size=0.1)
cone(1.9,1.25,pi/4,pi/4,size=0.1)
cone(1.7,-0.4,pi/4,pi/4,size=0.1)
cone(-0.75,0.9,pi/4,pi/4,size=0.1)
## The singularity:
rt_sing <- cbind(r=0,t=seq(from=-4,to=4,len=1000))
jj <- TX(rt_sing,exterior=FALSE)
points(jj,type='l',col=colours$singularity,lwd=8)
polygon(jj,col=colours$singularity_interior)
## antisingularity (white hole singularity):
jj[,2] <- -jj[,2]
points(jj,type='l',col=colours$singularity,lwd=8)
polygon(jj,col=colours$singularity_interior)
## describe r<0 region:
text(0,+1.6,expression(r<0),cex=1.6)
text(0,-1.6,expression(r<0),cex=1.6)
## label the universe, antiuniverse, black hole, white hole:
text(0,-0.6,"white hole")
text(0,+0.6,"black hole")
text(-1.6,0.1,"antiuniverse")
text(1.6,0.1,"universe")
size <- 33
## do the horizons last:
segments(-size,-size,size,size,col=colours$horizon,lwd=5)
segments(size,-size,-size,size,col=colours$horizon,lwd=5)
## plot the AUT logo:
if(!isFALSE(getOption("schwarzschild_logo"))){logo(x=0.84,y=0.08, width=0.1)}
git(-2.4,-2.4)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.