`kruskal_with_throw` <- function(draw_schwarzschild = FALSE, label_curves = FALSE, colours=standard_colours){
## set the two arguments to TRUE to give more detail (but these give a
## very cluttered diagram)
## NB: everything here is (space,time); not (time,space). This is
## because it is easier to plot in R
ingoing_null <- colours$ingoing_light
outgoing_null <- colours$outgoing_light
constant_r_exterior <- colours$r
constant_t_exterior <- colours$t
constant_r_interior <- colours$t
constant_t_interior <- colours$r
## points from which to emit a ray of light (and draw spacelike curves
## of constant Schwarzschild r from):
r_emitting <- seq(from=1.05,len=4,to=2)
size <- 2
par(pty='s')
plot(NULL,type='n',asp=1,xlim=c(-size,size),ylim=c(-size,size),axes=FALSE,xlab="",ylab="",main="Kruskal-Szekeres coordinates")
clip(-2,2,-2,2)
par(xpd=FALSE)
if(draw_schwarzschild){
## First spacelike curves, exterior:
rt_ext <- as.matrix(expand.grid(
r = c(NA,seq(from=1,to=40,len=100)), # the NA is so we can just use plot(...,type='l')
t = seq(from=-4,to=4,len=9)
))
text(0,-1.9,"NB: lines of constant Schwarzschild r are timelike outside and spacelike inside")
## plot curves of constant Schwarzschild r on the exterior:
jj <- TX(rt_ext,exterior=TRUE)
points(jj,type='l',lty=1,lwd=0.5,col=constant_r_exterior) # spacelike
## Now curves of constant Schwarzschild t, exterior:
rt_ext <- as.matrix(expand.grid(
t = c(NA,seq(from=-4,to=4,len=1000)),
r = r_emitting
))[,2:1]
points(TX(rt_ext,exterior=TRUE),type='l',lwd=0.5,lty=1,col=constant_t_exterior) # timelike
## Now spacelike (sic!) curves on the interior:
rt_int <- as.matrix(expand.grid(
r = c(NA,seq(from=0,to=1,len=300)),
t = seq(from=-4,to=4,len=9)
))
points(TX(rt_int,exterior=FALSE),type='l',lty=1,lwd=0.5,col = constant_t_interior)
## Now timelike curves, interior
rt_int <- as.matrix(expand.grid(
t = c(NA,seq(from=-4,to=4,len=1000)),
r = c(0.95, 0.8, 0.6, 0.4,0.1)
))[,2:1]
points(TX(rt_int,exterior=FALSE),type='l',lty=1,lwd=0.5,col=constant_r_interior)
}
## Now the antisingularity; the other square root:
## jj[,2]<- -jj[,2]
## points(jj ,type='l',col='black',lwd=8)
## light curves:
if(FALSE){
l <- 10
for(i in r_emitting){
X <- sqrt(i-1)*exp(i/2) # KS coordinate 'X'
segments(x0=X,y0=0, # start point
x1 = 0.5*(X-1/X), y1=-0.5*(-X-1/X), col=ingoing_null) # ingoing
segments(x0=X,y0=0, # start point
x1=X+l,y1=X+10,col=outgoing_null)
}
}
if(label_curves){
## label some timelike curves on the exterior
text(0.53,-0.22,labels=paste("r = ",r_emitting[1],sep=""),col=colours$t,srt=-60)
text(1.33,-0.30,labels=paste("r = ",round(r_emitting[2],2),sep=""),col=colours$t,srt=-80)
text(2.05,-0.30,labels=paste("r = ",round(r_emitting[3],2),sep=""),col=colours$t,srt=-82)
## label some spacelike curves on the exterior
text(0.7,0.06,labels=paste("t = ",0,sep=""),col=colours$r,srt=0)
text(0.8,-0.3,labels=paste("t = ",-1,sep=""),col=colours$r,srt=-25)
text(1.1,-0.75,labels=paste("t = ",-2,sep=""),col=colours$r,srt=-35)
text(1.7,-1.45,labels=paste("t = ",-3,sep=""),col=colours$r,srt=-40)
text(1,0.53,labels=paste("t = ",1,sep=""),col=colours$r,srt=25)
text(1.1,0.9,labels=paste("t = ",2,sep=""),col=colours$r,srt=35)
## label some spacelike curves on the interior (constant t [sic])
text(0.05,0.5,labels=paste("t = ",0,sep=""),col=colours$r,srt=90)
text(0.22,0.6,labels=paste("t = ",1,sep=""),col=colours$r,srt=64)
text(0.60,0.9,labels=paste("t = ",2,sep=""),col=colours$r,srt=52)
## label some timelike curves on the interior (constant t [sic])
text(-0.39,0.6,labels=paste("r = ",0.95,sep=""),col=colours$t,srt=-35)
text(-0.1,0.74,labels=paste("r = ",0.8,sep=""),col=colours$t,srt=-10)
text(-0.4,0.9,labels=paste("r = ",0.6,sep=""),col=colours$t,srt=-22)
}
par(lend=1)
legend(x=-2,y=0.6,lty=1,lwd=5, col=c(colours$horizon, colours$singularity),
legend=c("horizon","singularity")
)
legend(x=-2,y=0,lty=1,lwd=1,
col=c(colours$captured, colours$critical, colours$escaping),
legend=c('captured world lines','critical case','escaping world lines')
)
if(FALSE){
legend(x=-2,y=-0.6,lty=1,lwd=0.5,
col=c(colours$r,colours$t),
legend=c("lines of constant Schwarzschild r",
"lines of constant Schwarzschild t")
)
}
## do some light cones:
jj <-TX(cbind(r_emitting,0),exterior=TRUE)
cone(jj[1,1],jj[1,2],pi/4,pi/4,size=0.1)
cone(1.9,1.25,pi/4,pi/4,size=0.1)
cone(1.7,-0.4,pi/4,pi/4,size=0.1)
cone(-0.75,0.9,pi/4,pi/4,size=0.1)
lthick <- 1
f <- function(epsilon,r0,t0,sign, doplot=TRUE, ...){
## find the world-line in Schwarzschild coords:
jj <- trajectory(t0=t0, r0=r0, epsilon=epsilon, sign=sign,n=20000)
tx <- TX(jj,r0>1)
if(doplot){
points(tx,type='l',lwd=lthick,...)
}
return(tx)
}
f(1.00, 1.37, 0, sign=-1, col=colours$captured)
f(1.00, 0.999, 6.47, sign=-1, col=colours$captured)
f(0.80, 1.37, 0, sign=-1, col=colours$captured)
f(0.80, 0.999, 6.62, sign=-1,col=colours$captured)
f(0.70, 1.37, 0, sign=-1, col=colours$captured)
f(0.70, 0.999, 6.77, sign=-1,col=colours$captured)
f(0.62, 1.37, 0, sign=-1, col=colours$captured)
f(0.62, 0.999, 7.00, sign=-1,col=colours$captured)
f(0.57, 1.37, 0, sign=-1, col=colours$captured)
f(0.57, 0.999, 7.275, sign=-1,col=colours$captured)
f(0.52, 1.37, 0, sign=-1, col=colours$captured)
f(0.52, 0.999, 8.3, sign=-1, col=colours$captured)
f(0.55, 1.37, 0, sign=+1,col=colours$critical)
#world-line, inside the event horizon, that terminates before the
#singularity:
f(0.55, 1.24, -1, sign=-1,col=colours$captured)
jj <- f(0.55, 0.999, 5.27, sign=-1,doplot=FALSE)
points(jj[1:2000,],type='l',lwd=lthick,col=colours$captured)
jjj <- RT(jj)
r_explosion <- jjj[2000,1]
t_explosion <- jjj[2000,2]
f(epsilon=0.01, r_explosion,t_explosion,sign=1,col=colours$captured)
f(epsilon=0.20, r_explosion,t_explosion,sign=1,col=colours$captured)
f(epsilon=0.30, r_explosion,t_explosion,sign=1,col=colours$captured)
f(epsilon=0.40, r_explosion,t_explosion,sign=1,col=colours$captured)
f(epsilon=0.20, r_explosion,t_explosion,sign=-1,col=colours$captured)
f(epsilon=0.30, r_explosion,t_explosion,sign=-1,col=colours$captured)
f(epsilon=0.40, r_explosion,t_explosion,sign=-1,col=colours$captured)
f(epsilon=3.40, r_explosion,t_explosion,sign=-1,col=colours$captured)
f(9.72, 1.37, 0, sign=+1,col=colours$escaping)
f(1.00, 1.37, 0, sign=+1,col=colours$escaping)
f(0.62, 1.37, 0, sign=+1,col=colours$escaping)
## singularity:
rt_sing <- cbind(r=0,t=seq(from=-4,to=4,len=1000))
jj <- TX(rt_sing,exterior=FALSE)
points(jj,type='l',col=colours$singularity,lwd=8)
polygon(jj,col=colours$singularity_interior)
## describe r<0 region:
text(0,1.6,expression(r<0),cex=1.6)
size <- 33
## do the horizons last:
segments(0,0,size,size,col=colours$horizon,lwd=5)
segments(size,-size,-size,size,col=colours$horizon,lwd=5)
## plot the AUT logo:
if(!isFALSE(getOption("schwarzschild_logo"))){logo(x=0.84,y=0.08, width=0.1)}
git(-2,-2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.