# Get supervised conformal interval using repeated subsamples of
# one observation per group.
# Data example: sleepstudy from lme4
library(progress)
library(tidyverse)
library(data.table)
library(lme4)
library(ConformalTwoLayer)
# Read in arguments for start/end baseline response values
start_bl_value <- 190
end_bl_value <- 330
args <- commandArgs(trailingOnly = TRUE)
if (length(args) > 0) {
args <- as.numeric(args)
start_bl_value <- args[1]
end_bl_value <- args[2]
}
# Set alpha level
alpha <- 0.10
# Read in data
data(sleepstudy)
sleep_df <- sleepstudy %>%
dplyr::mutate(Subject = as.numeric(Subject)) %>%
as.data.table(key = "Subject")
# Add baseline (day 0) reaction time column
sleep_df[, Baseline := sleep_df[Days == 0][Subject, Reaction]]
sleep_df <- sleep_df[Days > 0]
# Construct vectors of values for making predictions
day_vec <- c(1, 5, 9)
baseline_vec <- seq(start_bl_value, end_bl_value, by = 10)
# Construct data frame to store results
results <- data.table(expand.grid(Days = day_vec, Baseline = baseline_vec),
alpha = alpha,
min_pred_int = NA_real_,
max_pred_int = NA_real_)
# Number of times to resample to get average p-value
n_resamp <- 100
# Set up progress bar
pb <- progress_bar$new(format = paste0("Row :current / :total",
"[:bar] :eta"),
total = nrow(results), clear = T,
show_after = 0)
# For each combination of Days and Baseline, construct prediction interval.
for(row in 1:nrow(results)) {
# Increment progress bar
pb$tick()
# Extract day and baseline measure. Use as new_xy_data.
day_val <- results[row, Days]
baseline_val <- results[row, Baseline]
new_xy_data <- data.frame(Days = day_val, Baseline = baseline_val)
# Set seed - depends on day and baseline
set.seed(day_val + baseline_val)
# n_val is number of observations for each individual (same across indivs)
n_val <- nrow(sleep_df[Subject == 1])
# Get prediction interval results
repeated_sub_results <-
sup_repeated_subsample(xy_data = sleep_df,
model_formula = formula(Reaction ~ Days + Baseline - 1),
alpha = alpha,
n_val = n_val,
k_indices = unique(sleep_df[, Subject]),
n_resamp = n_resamp,
grid_values = seq(min(sleep_df$Reaction) - 50,
max(sleep_df$Reaction) + 50,
length.out = 20),
new_xy_data = new_xy_data)
# Store bounds of prediction intervals
results[row, min_pred_int := repeated_sub_results$lower_bound]
results[row, max_pred_int := repeated_sub_results$upper_bound]
}
# Save simulation results.
fwrite(results,
file = paste0("sim_data/section_6/method_3_size_", start_bl_value,
"_", end_bl_value, ".csv"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.