## this script will be used to put together the data required to build the household/unit level model
## and then run it as well
require(readstata13)
require(data.table)
require(sf)
require(spatstat)
#### load the geopolycensus data i.e. geospatial census of remote sensing data
#### as well hh survey and adm level boundary file from poverty economist
geopolycensus_dt <- readRDS("tests/testdata/gin_geopolycensus.RDS") ##read in geospatial data
## read household locations and survey data
hhlocation_dt <- as.data.table(readstata13::read.dta13("tests/testdata/GIN-Grappe_GPS_2018.dta"))
hhsurvey_dt <- as.data.table(readstata13::read.dta13("tests/testdata/ehcvm_welfare_GIN2018.dta"))
## include the shapefile with admin level definitions
shapefile_dt <- sf::st_read(dsn = "tests/testdata",
layer = "sous_prefectures_valid")
shapefile_dt <- as.data.table(shapefile_dt)
shapefile_dt[ADM1_NAME == "Labe\r\n", ADM1_NAME := "Labe"]
## now we use the saeplus_prepdata() to clean up the data before they can be used to prep the unit model
clean_obj <-
saeplus_prepdata(hhsurvey_dt = hhsurvey_dt,
hhid_var = "hhid",
adminshp_dt = shapefile_dt,
hhgeo_dt = hhlocation_dt,
hhcoords = c("coordonnes_gps__Longitude",
"coordonnes_gps__Latitude"),
geosurvey_mergevars = c("vague", "grappe"),
geopolycensus_dt = geopolycensus_dt)
clean_obj$survey_data[is.na(ADM1_NAME) == TRUE & prefecture == "CONAKRY",
c("ADM1_NAME", "ADM1_CODE", "ADM2_NAME", "ADM2_CODE", "ADM3_NAME", "ADM3_CODE") :=
list("Conakry", 2, "Conakry", 2001, "Ratoma", 200105)]
clean_obj$survey_data[is.na(ADM1_NAME) == TRUE & prefecture == "MANDIANA",
c("ADM1_NAME", "ADM1_CODE", "ADM2_NAME", "ADM2_CODE", "ADM3_NAME", "ADM3_CODE") :=
list("Kankan", 4, "Mandiana", 4004, "Koundianakoro", 400407)]
## now we are ready to go into the saeplus_modelunitlevel()
modelvars <-
colnames(clean_obj$geopolygon_census)[!(colnames(clean_obj$geopolygon_census) %in%
c("id", "imagery_year", "population", "geometry"))]
modelvars <- c(modelvars, c("Boke", "Kindia", "Conakry", "Mamou", "Faranah",
"Nzerekore", "Kankan", "Labe"))
gin_modelresults <-
saeplus_modelunitlevel(hhsurvey_dt = clean_obj$survey_data,
hhid_var = "hhid", size_hh = "hhsize",
adminshp_dt = clean_obj$adminshp_data,
target_id = "ADM3_CODE",
geopolycensus_dt = clean_obj$geopolygon_census,
geopopvar = "population",
dummy_var = "ADM1_NAME",
tid_aggregate = TRUE,
crs_set = rep(4326, 3),
agr_set = rep("constant", 3),
cand_vars = modelvars,
cons_var = "pcexp",
wgt_vartype = "hh",
weight = "hhweight",
create_dummy = TRUE,
aggregate_id = "ADM1_CODE")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.