## calLM.R Calibration of monthly/seasonal forecasts
##
## Copyright (C) 2018 Santander Meteorology Group (http://www.meteo.unican.es)
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
#' @title Linear regression based calibration of seasonal climate forecasts
#' @description This function performs an EMOS-like linear regression between the ensemble mean and the corresponding observations.
#' To correct the forecast variance, the standardized anomalies are rescaled by the standard deviation of the predictive distribution from the linear fitting.
#' @note Ensemble Model Output Statistics (EMOS) methods use the correspondence between the ensemble mean and the observations in the calibration process.
#' @param fcst.grid climate4R grid. Forecasts to be calibrated (typically on a monthly/seasonal basis). At the moment, only gridded data are supported.
#' @param obs.grid climate4R grid. Reference observations the forecasts are calibrated towards (typically on a monthly/seasonal basis).
#' @param crossval Logical. TRUE (default) for leave-one-out-out cross-validation. FALSE for not cross-validation.
#' @param apply.to Character. If \code{"all"} is selected, all forecasts are calibrated. Alternatively, if \code{"sig"} is selected, the calibration is only applied
#' in those points where the correlation between the ensemble mean and the observations is statistically significant.
#' @param alpha Significance (0.1 by default) of the ensemble mean correlation (i.e. \code{"alpha = 0.05"} would correspond to a 95\% confidence level). Only works if \code{"apply.to = sig"}.
#' @return climate4R grid. Calibrated forecasts.
#' @importFrom transformeR getShape
#' @importFrom stats cor.test lm predict sd pnorm
#' @export
#' @author R. Manzanas and J. Bhend.
#' @family calibration
#' @examples{
#' ## loading seasonal forecasts (CFS) and observations (NCEP) of boreal winter temperature over Iberia
#' require(climate4R.datasets)
#' data("CFS_Iberia_tas"); fcst = CFS_Iberia_tas
#' data("NCEP_Iberia_tas"); obs = NCEP_Iberia_tas
#' ## passing from daily data to seasonal averages
#' fcst = aggregateGrid(fcst, aggr.y = list(FUN = "mean", na.rm = TRUE))
#' obs = aggregateGrid(obs, aggr.y = list(FUN = "mean", na.rm = TRUE))
#' ## interpolating forecasts to the observations' resolution
#' fcst = interpGrid(fcst, new.coordinates = getGrid(obs))
#' ## applying calibration
#' fcst.cal = calLM(fcst, obs, crossval = TRUE, apply.to = "all")
#' ## plotting climatologies
#' library(visualizeR)
#' spatialPlot(makeMultiGrid(climatology(obs),
#' climatology(fcst, by.member = FALSE),
#' climatology(fcst.cal, by.member = FALSE)),
#' backdrop.theme = "coastline",
#' layout = c(3, 1),
#' names.attr = c("NCEP", "CFS (raw)", "CFS (calibrated)"))
#' }
calLM <- function(fcst.grid, obs.grid, crossval = TRUE, apply.to = c("all", "sig"), alpha = 0.1) {
apply.to = match.arg(apply.to, choices = c("all","sig"))
fcst = fcst.grid$Data
obs = obs.grid$Data
stopifnot(identical(dim(fcst)[-1], dim(obs))) # check for equality of dimensions between fcst and obs
nmemb = getShape(fcst.grid, "member")
ntimes = getShape(fcst.grid, "time")
nlat = getShape(fcst.grid, "lat")
nlon = getShape(fcst.grid, "lon")
fcst.cal = NA*fcst
for (ilat in 1:nlat) {
if (!(ilat/10) - trunc(ilat/10)) {
message(sprintf("... lat %d of %d ...", ilat, nlat))
}
for (ilon in 1:nlon) {
tryCatch({
if (crossval) {
## leave-one-out cross-validation
aux = sapply(1:ntimes, function(x) {
obs.train = obs[-x,ilat,ilon]
fcst.train = fcst[,-x,ilat,ilon]
ens.mean = colMeans(fcst.train)
clim.fcst = mean(fcst.train, na.rm = T)
fcst.test = fcst[,x,ilat,ilon]
fcst.test.anom = (fcst.test - mean(fcst.test, na.rm = T)) / sd(fcst.test, na.rm = 2)
rho = cor.test(obs.train, ens.mean, method = "pearson", alternative = "greater")
if (apply.to == "sig") {
if (rho$p.value < alpha) { # statistically significant (alpha*100(%)) correlation
flm <- lm(obs ~ fcst, data.frame(obs = obs.train, fcst = ens.mean))
plm = predict(flm, data.frame(fcst = mean(fcst.test)),
interval = "prediction", level = pnorm(1) - pnorm(-1))
plm[,1] + -apply(plm[,1:2, drop=F], 1, diff) * fcst.test.anom
} else {
fcst.test
}
} else if (apply.to == "all") {
flm <- lm(obs ~ fcst, data.frame(obs = obs.train, fcst = ens.mean))
plm = predict(flm, data.frame(fcst = mean(fcst.test)),
interval = "prediction", level = pnorm(1) - pnorm(-1))
plm[,1] + -apply(plm[,1:2, drop=F], 1, diff) * fcst.test.anom
}
})
fcst.cal[,,ilat,ilon] = aux; rm(aux)
} else {
obs.train = obs[,ilat,ilon]
fcst.train = fcst[,,ilat,ilon]
ens.mean = colMeans(fcst.train)
sigma.e.train = apply(fcst.train, 2, sd, na.rm = T)
clim.fcst = mean(fcst.train, na.rm = T)
fcst.test = fcst.train
fcst.test.anom = (fcst.train - matrix(ens.mean, nrow = nmemb, ncol = ntimes, byrow = T)) / matrix(sigma.e.train, nrow = nmemb, ncol = ntimes, byrow = T)
rho = cor.test(obs.train, ens.mean, method = "pearson", alternative = "greater")
if (apply.to == "sig") {
if (rho$p.value < alpha) { # statistically significant (alpha*100(%)) correlation
flm <- lm(obs ~ fcst, data.frame(obs = obs.train, fcst = ens.mean))
plm = predict(flm, data.frame(fcst = ens.mean),
interval = "prediction", level = pnorm(1) - pnorm(-1))
aux = sapply(1:ntimes, function(x){
plm[x,1] + -apply(plm[x,1:2, drop=F], 1, diff) * fcst.test.anom[,x]
})
} else {
aux = fcst.test
}
} else if (apply.to == "all") {
flm <- lm(obs ~ fcst, data.frame(obs = obs.train, fcst = ens.mean))
plm = predict(flm, data.frame(fcst = ens.mean),
interval = "prediction", level = pnorm(1) - pnorm(-1))
aux = sapply(1:ntimes, function(x){
plm[x,1] + -apply(plm[x,1:2, drop=F], 1, diff) * fcst.test.anom[,x]
})
}
fcst.cal[,,ilat,ilon] = aux; rm(aux)
}
}, error = function(x) {
# NA data
})
}
}
fcst.out = fcst.grid
fcst.out$Data = fcst.cal
attributes(fcst.out$Data)$dimensions = attributes(fcst.grid$Data)$dimensions
return(fcst.out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.