compute_quantiles: compute quantiles of data across categories

Description Usage Arguments Value Author(s) Examples

View source: R/compute_quantiles.R

Description

compute quantiles of data across categories

Usage

1
compute_quantiles(sim_panel_data, quantile_prob = seq(0.01, 0.99, 0.01))

Arguments

sim_panel_data

data with categories and response variable

quantile_prob

quantiles of reponse variable needed

Value

data with quantiles of response variable corresponding to categories

Author(s)

Sayani07

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
library(ggplot2)
library(tidyverse)
library(distributional)
sim_panel_data <- sim_panel(
  nx = 3,
  nfacet = 2,
  ntimes = 100,
  sim_dist = distributional
  ::dist_normal(5, 10)
) %>%
  unnest(c(data))
sim_panel_data %>% ggplot() +
  geom_boxplot(aes(x = as.factor(id_x), y = sim_data)) +
  facet_wrap(~id_facet)
compute_quantiles(sim_panel_data) %>%
  unnest(sim_data_quantile) %>%
  ggplot() +
  geom_boxplot(aes(x = as.factor(id_x), y = unlist(sim_data_quantile))) +
  facet_wrap(~id_facet)

sim_varx_normal <- function(nx, nfacet, mean, sd, w) {
  rep(dist_normal((mean + seq(0, nx - 1, by = 1) * w), sd), nfacet)
}
data <- sim_panel(
  nx = 3,
  nfacet = 2,
  ntimes = 100,
  sim_dist = sim_varx_normal(nx = 3, nfacet = 2, mean = 0, sd = 1, w = 100)
)
sim_panel_data %>% ggplot() +
  geom_boxplot(aes(x = as.factor(id_x), y = sim_data)) +
  facet_wrap(~id_facet)
compute_quantiles(sim_panel_data) %>%
  unnest(sim_data_quantile) %>%
  ggplot() +
  geom_boxplot(aes(x = as.factor(id_x), y = unlist(sim_data_quantile))) +
  facet_wrap(~id_facet)

Sayani07/hakear documentation built on Sept. 14, 2021, 10:59 a.m.