Description Usage Arguments Value Author(s) Examples
Simulate a panel of one or two categorical variables and a response variable corresponding to a specified distribution or design
1 | sim_panel(nx = 2, nfacet = 3, ntimes = 500, sim_dist = sim_varall)
|
nx |
number of x categories |
nfacet |
number of facet categories |
ntimes |
number of observations to be simulated for each categories |
sim_dist |
type of distribution to be simulated |
the simulated data for the data structure considered
Sayani07
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | library(tidyverse)
library(distributional)
sim_varx_normal <- function(nx, nfacet, mean, sd, w) {
rep(dist_normal((mean + seq(0, nx - 1, by = 1) * w), sd), nfacet)
}
sim_panel_data <- sim_panel(
nx = 1, nfacet = 3,
ntimes = 5,
sim_dist = sim_varx_normal(1, 3, 0, 1, 10)
) %>% unnest(data)
sim_panel_data %>%
ggplot() +
geom_boxplot(aes(x = as.factor(id_x), y = sim_data)) +
facet_wrap(~id_facet)
compute_quantiles(sim_panel_data) %>%
unnest(c(sim_data_quantile)) %>%
ggplot() +
geom_boxplot(aes(x = as.factor(id_x), y = sim_data_quantile)) +
facet_wrap(~id_facet)
sim_varf_normal <- function(nx, nfacet, mean, sd, w) {
rep(dist_normal((mean + seq(0, nfacet - 1, by = 1) * w), sd), each = nx)
}
sim_panel_data <- sim_panel(
nx = 2, nfacet = 3,
ntimes = 5,
sim_dist = sim_varf_normal(2, 3, 0, 1, 10)
) %>% unnest(data)
sim_panel_data %>%
ggplot() +
geom_boxplot(aes(x = as.factor(id_x), y = sim_data)) +
facet_wrap(~id_facet)
compute_quantiles(sim_panel_data) %>%
unnest(c(sim_data_quantile)) %>%
ggplot() +
geom_boxplot(aes(x = as.factor(id_x), y = sim_data_quantile)) +
facet_wrap(~id_facet)
sim_varall_normal <- function(nx, nfacet, mean, sd, w) {
dist_normal((mean + seq(0,
(nx *
nfacet - 1),
by = 1
) * w), sd)
}
sim_panel_data <- sim_panel(
nx = 2, nfacet = 3,
ntimes = 5,
sim_dist = sim_varall_normal(2, 3, 0, 1, 10)
) %>% unnest(data)
sim_panel_data %>%
ggplot() +
geom_boxplot(aes(x = as.factor(id_x), y = sim_data)) +
facet_wrap(~id_facet)
compute_quantiles(sim_panel_data) %>%
unnest(c(sim_data_quantile)) %>%
ggplot() +
geom_boxplot(aes(x = as.factor(id_x), y = sim_data_quantile)) +
facet_wrap(~id_facet)
compute_pairwise_max(sim_panel_data, "id_x", "id_facet",
response = sim_data
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.