rank_harmonies: rank harmonies with significant patterns

Description Usage Arguments Examples

View source: R/rank_harmonies.R

Description

rank harmonies with significant patterns

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
rank_harmonies(
  .data,
  harmony_tbl = NULL,
  response = NULL,
  quantile_prob = seq(0.01, 0.99, 0.01),
  dist_ordered = TRUE,
  lambda = 0.67,
  nperm = 20,
  use_perm = TRUE
)

Arguments

.data

a tsibble or data with already computed categories

harmony_tbl

A tibble containing one or more hamronies with facet_variable, x_variable, facet_levels and x_levels

response

the response variable

quantile_prob

numeric vector of probabilities with value #'in [0,1] whose sample quantiles are wanted. Default is set to #' "decile" plot

dist_ordered

if categories are ordered

lambda

value of tuning parameter for computing weighted pairwise distances

nperm

number of permutations for normalization

use_perm

should permutation approach for normalization be used

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
library(gravitas)
library(parallel)
library(dplyr)
library(tidyr)
sm <- smart_meter10 %>%
  filter(customer_id %in% c("10017936"))
harmonies <- sm %>%
  harmony(
    ugran = "month",
    filter_in = "wknd_wday",
    filter_out = c("hhour", "fortnight")
  )
all_harmony <- rank_harmonies(sm,
  harmony_tbl = harmonies,
  response = general_supply_kwh
)

Sayani07/hakear documentation built on Sept. 14, 2021, 10:59 a.m.