| clusterComp | R Documentation |
Reformat the table for the one neccessary for assignClusters function. Calculate the distance matirx using selected variant of correlation.
clusterComp(.df, scenar = "A", PearsCor = "centered")
.df |
data frame, table of normalised protein values |
scenar |
character, scenario intended for clustering, either "A" or "B" |
PearsCor |
character, pearsons correlation variant (centered/uncentered) |
list of data frames
##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
# create components necessary for clustering
clusteringDF <- clusterComp(forAnalysis,scenar = "A", PearsCor = "centered")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.