Description Usage Arguments Value Author(s) Examples
Generates multiple spatial dependent attributes with fixed skewness.
1 | multigensd (n.attr, size, grid, sk = 1, dep = 0.5, mu = 0, v = 1, method = "SAR", dst = "skewnormal")
|
n.attr |
Number of attributes to be generated. |
size |
a vector of two elements specifying respectively numbers of indivuals and time points of the attribute to be generated. |
grid |
number of rows and columns for grids. |
sk |
a scalar that represents the skewness coefficient to be considered. |
dep |
a scalar that represents the dependence correlation between values within a given attribute. |
mu |
the mean value |
v |
the variance value |
method |
a character string naming the the approach used to create spatial dependence between variables. The "SAR" method is the Kapoor, Kelejian, and Prucha (2007)-spatial autoregressive random effects (SAR-RE) model. The "SARMA" method represents the Lee and Yu (2012) spatial autoregressive moving average random effects (SARMA-RE) model. |
dst |
a character string naming the distribution to be used for vectors generation. "skewnormal" the skew-normal distribution is limited to a range of [0,1[ for the coefficient of skewness. "lognormal" the lognormal distribution allows a large range of coefficients skewness values. |
Returns a list.
mat.attributes |
Multiple spatial dependent and skewed attributes generated. |
spatial.dependence |
Racall of the spatial dependence existing within values of a given attribute generated |
skewness.coef |
Coefficient of skewness of spatial attributes generated. |
Sewanou Honfo <honfosewanou@gmail.com> and Brezesky Kotanmi <kotangaebrezesky@gmail.com> and Eunice Gnanvi <eunysgnanvi@gmail.com> and Chenangnon Tovissode <chenangnon@gmail.com> and Romain glèlè Kakaï <glele.romain@gmail.com> / LABEF_08_2019
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | Consider a simulation study that requires 10 skewed (3.6) spatial attribbutes with a spatial autoregressive coefficient (spatial correlation) of 0.5.
Each attribute has 100 subjects and 7 observations (time points) per subject. We choose to design 10 x 10 square grids.
# Loading package
library(genspatattr)
# As the skewness required exceeds the interval [0,1], we use the lognormal distribution and SAR method to maintain null the spatial moving average coefficient.
k1 <- c(100, 7)
k2 <- c(10, 10)
dt <- multigensd(n.attr = 10, size = k1, grid = k2, sk = 3.6, dst = "lognormal")
> head(dt$mat.attributes)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 36.76639 29.65413 321.04957 54.14535 5.620346 38.27667 118.73450 44.93622 56.44374
[2,] 21.99757 27.46571 95.71541 37.93883 8.538977 82.19352 44.64520 39.25272 45.69996
[3,] 40.25177 32.81329 31.67804 34.86756 18.055213 384.21476 20.64373 42.84450 62.49243
[4,] 20.91775 50.49171 17.53125 35.79660 49.848041 171.73468 35.92800 44.00423 138.66885
[5,] 17.16706 37.16105 12.95207 50.99651 38.020209 159.57852 26.01867 75.07399 55.96092
[6,] 13.39583 35.46820 15.07685 36.63703 71.563533 43.86750 73.75986 173.56775 44.58139
[,10]
[1,] 24.85834
[2,] 25.51857
[3,] 21.10237
[4,] 23.60568
[5,] 30.25069
[6,] 28.92886
> e1071::skewness(dt$mat.attributes[,1])
[1] 3.643574
> e1071::skewness(dt$mat.attributes[,10])
[1] 3.606651
> dt$spatial.dependence
[1] 0.5
> dt$skewness.coef
[1] 3.6
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.