Description Usage Arguments Value Examples
View source: R/candidateRelocatedProteins.R
Identify candidate condition-dependent relocated proteins by comparing neighborhood classifications with respect to protein-protein pearson correlation and minumum PSM, peptide spectrum matching, count.
1 2 3 4 5 6 7 8 9 10 11 | candidateRelocatedProteins(
sampleCls1,
s1PSM,
s1Quant,
sampleCls2,
s2PSM,
s2Quant,
annotation = FALSE,
min.psm = 2,
pearson.cor = 0.8
)
|
sampleCls1 |
data.frame; merged classification, combination of compartment and neighborhood classification. |
s1PSM |
data.frame; minimum PSM count table across ten TMT channel |
s1Quant |
data.frame; fractionation quantification data |
sampleCls2 |
data.frame; merged classification, combination of compartment and neighborhood classification. |
s2PSM |
data.frame; minimum PSM count table across ten TMT channel |
s2Quant |
data.frame; fractionation quantification data |
annotation |
boolean; labeling the selected proteins |
min.psm |
numeric; minimum psm, peptide spectra matching value |
pearson.cor |
numeric; pearson correlation threshold |
candidate.df
1 2 3 4 5 6 7 8 | {
candidate.df <- candidateRelocatedProteins(hcc827GEFClass, hcc827GefPSMCount,
hcc827GEF, hcc827GEFClass, hcc827GefPSMCount, hcc827GEF,
annotation = FALSE)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.