effectiveSize.dmc: Effective Sample Size for Estimating the Mean

Description Usage Arguments Examples

Description

effectiveSize.dmc calls coda effectiveSize to effective size for either single or multiple subjects. It can calculate at the data or hyper level, too.

Usage

1
effectiveSize.dmc(x, hyper = FALSE, digits = 0, start = 1, end = NA)

Arguments

x

a DMC sample

hyper

a switch to extract hyper attribute and calculate it

digits

print out how many digits

start

start iteration

end

end iteraton

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
m1 <- model.dmc(
     p.map     = list(a="1",v="F",z="1",d="1",sz="1",sv="1",t0="1",st0="1"),
     match.map = list(M=list(s1="r1",s2="r2")),
     factors   = list(S=c("s1","s2"),F=c("f1","f2")),
     constants = c(st0=0,d=0),
     responses = c("r1","r2"),
     type      = "rd")

pop.mean  <- c(a=1.15, v.f1=1.25, v.f2=1.85, z=.55,  sz=.15, sv=.32, t0=.25)
pop.scale <- c(a=.10,  v.f1=.8,   v.f2=.5,   z=0.1,  sz=.05, sv=.05, t0=.05)
pop.prior <- prior.p.dmc(
  dists = rep("tnorm", length(pop.mean)),
  p1    = pop.mean,
  p2    = pop.scale,
  lower = c(0,-5, -5, 0, 0,   0, 0),
  upper = c(5, 7,  7, 1, 0.5, 2, 2))

dat  <- h.simulate.dmc(m1, nsim=30, ns=4, p.prior=pop.prior)
mdi1 <- data.model.dmc(dat, m1)
ps   <- attr(dat,  "parameters")
### FIT RANDOM EFFECTS
p.prior <- prior.p.dmc(
  dists = c("tnorm","tnorm","tnorm","tnorm","tnorm", "tnorm", "tnorm"),
  p1=pop.mean,
  p2=pop.scale*5,
  lower=c(0,-5, -5, 0, 0, 0, 0),
  upper=c(5, 7,  7, 2, 2, 2, 2))

mu.prior <- prior.p.dmc(
  dists = c("tnorm","tnorm","tnorm","tnorm","tnorm", "tnorm", "tnorm"),
  p1=pop.mean,
  p2=pop.scale*5,
  lower=c(0,-5, -5, 0, 0, 0, 0),
  upper=c(5, 7,  7, 2, 2, 2, 2))

sigma.prior <- prior.p.dmc(
  dists = rep("beta", length(p.prior)),
  p1=c(a=1, v.f1=1,v.f2 = 1, z=1, sz=1, sv=1, t0=1),p2=c(1,1,1,1,1,1,1),
  upper=c(2,2,2,2,2, 2, 2))

pp.prior <- list(mu.prior, sigma.prior)

hsamples0 <- h.samples.dmc(nmc=10, p.prior=p.prior, pp.prior=pp.prior,
  data=mdi1, thin=1)
hsamples0 <- h.run.dmc(hsamples0)
es <- effectiveSize.dmc(hsamples0)
hes <- effectiveSize.dmc(hsamples0, hyper=TRUE)

TasCL/ggdmc documentation built on May 9, 2019, 4:19 p.m.