Description Usage Arguments Examples
Univariate smoother using P-splines, by Paul Eilers & Brian Marx (1995). For the smooth splines, thin plate splines, and adaptive smoothing splines approaches, go to help("SemiParametricRegression").
1 2 | pspline.fit(response, x.var, ps.intervals, wts, degree, order,
link, family, m.binomial, r.gamma, lambda, x.predicted, ridge.adj)
|
response |
Response variable |
x.var |
Explanatory variable on abcissae |
ps.intervals |
Number of intervals for B-splines. Default=8. |
wts |
Vector of weights; default is vector of ones. |
degree |
Degree of B-splines. Default=3. |
order |
Order of difference penalty. Default=3. |
link |
Link function (identity, log, sqrt, logit, probit, cloglog, loglog, recipical). |
family |
What kind of distribution (family=gaussian, binomial, poisson, gamma) |
m.binomial |
Vector of binomial trials. Default is 1 vector. |
r.gamma |
Vector of gamma shape parameters. Default is 1 vector. |
lambda |
Smoothness regularizing parameter ( >= 0). Default=0. |
x.predicted |
A list of x variables for prediction and twice stderr limits. |
ridge.adj |
Default=0.0001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # Load Belgian B19 data
data("VZV_B19_BE_0103")
subset<-(VZV_B19_BE_0103$age>0.5)&(VZV_B19_BE_0103$age<76)&(!is.na(VZV_B19_BE_0103$age))&
!is.na(VZV_B19_BE_0103$parvores)
VZV_B19_BE_0103<-VZV_B19_BE_0103[subset,]
y<-VZV_B19_BE_0103$parvores[order(VZV_B19_BE_0103$age)]
a<-VZV_B19_BE_0103$age[order(VZV_B19_BE_0103$age)]
s<-VZV_B19_BE_0103$sex[order(VZV_B19_BE_0103$age)]
grid<-sort(unique(round(a)))
neg<-table(y,round(a))[1,]
pos<-table(y,round(a))[2,]
tot<-neg+pos
degree <- 3
order <- 2
# P-splines, with logit link-function
lopt <- 80
pspline.fit(response=y, x.var=a, ps.intervals=20, degree=degree, order=order,
link="logit", family="binomial", lambda=lopt, x.predicted=a)
# P-splines, with cloglog link-function
lopt <- 200
pspline.fit(response=y, x.var=a, ps.intervals=20, degree=degree, order=order,
link="cloglog", family="binomial", lambda=lopt, x.predicted=a)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.