contact-fitter-location: Fitting Contact Data onto Serological Data With Different...

Description Usage Arguments See Also Examples

Description

As a first refinement to the social contact hypothesis addresses the potential of different types of social contacts to contribute to transmission, possibly at their own level. Consider location as the stratification variable with levels “home”, “school”, “work”, and “other”.

Usage

1
2
contact.fitter.location(a, y, rij, rij1, rij2, rij3, rij4, rij5, rij6, muy,
  N, D, Lmax, A, plots, startpar)

Arguments

a

Numeric vector of age categories.

y

The response variable (binary, 1=past infection, 0=otherwise).

rij

The smoothed contact matrix.

rij1

Different stratification levels of social contact matrices.

rij2

Different stratification levels of social contact matrices.

rij3

Different stratification levels of social contact matrices.

rij4

Different stratification levels of social contact matrices.

rij5

Different stratification levels of social contact matrices.

rij6

Different stratification levels of social contact matrices.

muy

Mortality function.

N

Population size.

D

Mean infectious period.

Lmax

Maximum age.

A

Age of loss of maternal immunity (0<A<1).

plots

Generate plots during fitting process.

startpar

Starting values for the “nlm” method used in this function.

See Also

pwcrate, waifw.6parms

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
ND <- c(489,47,29,21,12,12,16,15,15,6,6,14,17,19,17,23,34,33,62,71,68,68,78,71,71,96,86,83,79,
  80,83,93,126,120,121,132,135,176,161,193,196,218,257,277,331,376,356,435,460,453,535,545,
  576,668,692,759,722,819,939,1015,1051,973,1113,996,940,1074,1252,1367,1468,1541,1661,1838,
  2012,2236,2517,2793,2938,2994,3311,3516,3727,3857,4088,4161,4261,4274,4061,2509,2049,2159,
  2205,2550,2330,1992,1569,1242,1000,726,533,996)
PS <- c(118366,117271,114562,113894,116275,118030,116761,117742,119583,119887,118963,119958,
  124637,129143,131030,129724,127187,126433,124377,124883,122201,124482,126459,130129,133897,
  135009,134516,133495,132705,132040,130602,135638,140537,146151,150467,152113,151656,151412,
  153371,158268,162456,167652,164871,161671,162060,159735,160672,157030,153820,151114,148978,
  145929,142374,141215,135525,135968,134692,135991,134291,134131,113024,112198,105880,92772,
  84462,93787,100820,101866,97208,94145,92451,93027,91640,93593,91933,89900,81718,77891,73104,
  70082,67057,62178,57642,51786,47466,42065,28004,17186,14492,13838,13957,13358,10442,8063,5604,
  4289,2843,2068,1368,2146)
AGE<-c(0:(length(ND)-1))

estimL <- estimateLifeExpectancy(ND, PS, AGE)

# Using Belgian B19 data
data("VZV_B19_BE_0103")
VZV_B19_BE_0103 <- VZV_B19_BE_0103[!is.na(VZV_B19_BE_0103$parvores)&!is.na(VZV_B19_BE_0103$age)&
  VZV_B19_BE_0103$age<70&VZV_B19_BE_0103$age>=1,]
VZV_B19_BE_0103 <- VZV_B19_BE_0103[order(VZV_B19_BE_0103$age),]

y <- VZV_B19_BE_0103$parvores
a <- VZV_B19_BE_0103$age

# Mean duration of infectiousness
D <- 6/365

# Maximum life (if type mortality this is the life expectancy)
Lmax<-100

# Age of loss of maternal immunity (0<A<1)
A <- 0.5

# Mortality function
My <- estimL$My[1:Lmax]
muy <- estimL$muy[1:Lmax]

# Population size
N <- sum(PS)

data("loc_home")
data("loc_school")
data("loc_work")
data("loc_leisure")
data("loc_transport")
data("loc_otherplace")

data("scd_close_p4h")

contact.result<-contact.fitter.location(a=a,y=y,rij=scd_close_p4h,loc_home,
  loc_school,loc_work,0*loc_leisure,0*loc_transport,loc_otherplace,muy=muy,
  N=N,D=D,Lmax=85,A=A,plots="TRUE",
  startpar=c(0.4,0.001,0.001,0.001,0.001,0.001))
c(contact.result$q,contact.result$R0,contact.result$aic)

contact.result<-contact.fitter.location(a=a,y=y,rij=scd_close_p4h, loc_home,
  loc_school,loc_work,0*loc_leisure,0*loc_transport,loc_otherplace,muy=muy,
  N=N,D=D,Lmax=85,A=A,plots="TRUE",
  startpar=c(0.01,0.41,0.001,0.001,0.001,0.001))
c(contact.result$q,contact.result$R0,contact.result$aic)

TeaKov/serostat documentation built on May 21, 2019, 1:21 p.m.