Description Usage Arguments See Also Examples
Whereas in contact.fitter.location
refinement was based on stratification, we now argue that the proportionality factor “q” might depend on several characteristics related to susceptibility and infectiousness, which could be ethnic-, climate-, disease-, or age-specific.
1 | contact.fitter.loglinear(a, y, rij, int, muy, N, D, Lmax, A, plots, startpar)
|
a |
Numeric vector of age categories. |
y |
The response variable (binary, 1=past infection, 0=otherwise). |
rij |
The smoothed contact matrix. |
int |
Specifies if there is a third gamma variable or not. |
muy |
Mortality function. |
N |
Population size. |
D |
Mean infectious period. |
Lmax |
Maximum age. |
A |
Age of loss of maternal immunity (0<A<1). |
plots |
Generate plots during fitting process. |
startpar |
Starting values for the “nlm” method used in this function. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ND <- c(489,47,29,21,12,12,16,15,15,6,6,14,17,19,17,23,34,33,62,71,68,68,78,71,71,96,86,83,79,
80,83,93,126,120,121,132,135,176,161,193,196,218,257,277,331,376,356,435,460,453,535,545,
576,668,692,759,722,819,939,1015,1051,973,1113,996,940,1074,1252,1367,1468,1541,1661,1838,
2012,2236,2517,2793,2938,2994,3311,3516,3727,3857,4088,4161,4261,4274,4061,2509,2049,2159,
2205,2550,2330,1992,1569,1242,1000,726,533,996)
PS <- c(118366,117271,114562,113894,116275,118030,116761,117742,119583,119887,118963,119958,
124637,129143,131030,129724,127187,126433,124377,124883,122201,124482,126459,130129,133897,
135009,134516,133495,132705,132040,130602,135638,140537,146151,150467,152113,151656,151412,
153371,158268,162456,167652,164871,161671,162060,159735,160672,157030,153820,151114,148978,
145929,142374,141215,135525,135968,134692,135991,134291,134131,113024,112198,105880,92772,
84462,93787,100820,101866,97208,94145,92451,93027,91640,93593,91933,89900,81718,77891,73104,
70082,67057,62178,57642,51786,47466,42065,28004,17186,14492,13838,13957,13358,10442,8063,5604,
4289,2843,2068,1368,2146)
AGE<-c(0:(length(ND)-1))
estimL <- estimateLifeExpectancy(ND, PS, AGE)
# Using Belgian B19 data
data("VZV_B19_BE_0103")
VZV_B19_BE_0103 <- VZV_B19_BE_0103[!is.na(VZV_B19_BE_0103$parvores)&!is.na(VZV_B19_BE_0103$age)&
VZV_B19_BE_0103$age<70&VZV_B19_BE_0103$age>=1,]
VZV_B19_BE_0103 <- VZV_B19_BE_0103[order(VZV_B19_BE_0103$age),]
y <- VZV_B19_BE_0103$parvores
a <- VZV_B19_BE_0103$age
# Mean duration of infectiousness
D <- 6/365
# Maximum life (if type mortality this is the life expectancy)
Lmax<-100
# Age of loss of maternal immunity (0<A<1)
A <- 0.5
# Mortality function
My <- estimL$My[1:Lmax]
muy <- estimL$muy[1:Lmax]
# Population size
N <- sum(PS)
data("scd_close_p4h")
contact.result<-contact.fitter.loglinear(a=a,y=y,rij=scd_close_p4h,int=FALSE,
muy=muy,N=N,D=D,Lmax=85,A=A,plots="TRUE",startpar=c(-2.3,0,0))
c(contact.result$qhat,contact.result$R0,contact.result$aic)
contact.result$qhat/sqrt(diag(solve(contact.result$qhess)))
contact.result<-contact.fitter.loglinear(a=a,y=y,int=TRUE,rij=scd_close_p4h,
muy=muy,N=N,D=D,Lmax=85,A=A,plots="TRUE",startpar=c(-2.3,0,0))
c(contact.result$qhat,contact.result$R0,contact.result$aic)
contact.result$qhat/sqrt(diag(solve(contact.result$qhess)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.