contact-fitter-loglinear: Fitting Contact Data onto Serological Data - Age-Dependent...

Description Usage Arguments See Also Examples

Description

Whereas in contact.fitter.location refinement was based on stratification, we now argue that the proportionality factor “q” might depend on several characteristics related to susceptibility and infectiousness, which could be ethnic-, climate-, disease-, or age-specific.

Usage

1
contact.fitter.loglinear(a, y, rij, int, muy, N, D, Lmax, A, plots, startpar)

Arguments

a

Numeric vector of age categories.

y

The response variable (binary, 1=past infection, 0=otherwise).

rij

The smoothed contact matrix.

int

Specifies if there is a third gamma variable or not.

muy

Mortality function.

N

Population size.

D

Mean infectious period.

Lmax

Maximum age.

A

Age of loss of maternal immunity (0<A<1).

plots

Generate plots during fitting process.

startpar

Starting values for the “nlm” method used in this function.

See Also

pwcrate, waifw.6parms

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
ND <- c(489,47,29,21,12,12,16,15,15,6,6,14,17,19,17,23,34,33,62,71,68,68,78,71,71,96,86,83,79,
  80,83,93,126,120,121,132,135,176,161,193,196,218,257,277,331,376,356,435,460,453,535,545,
  576,668,692,759,722,819,939,1015,1051,973,1113,996,940,1074,1252,1367,1468,1541,1661,1838,
  2012,2236,2517,2793,2938,2994,3311,3516,3727,3857,4088,4161,4261,4274,4061,2509,2049,2159,
  2205,2550,2330,1992,1569,1242,1000,726,533,996)
PS <- c(118366,117271,114562,113894,116275,118030,116761,117742,119583,119887,118963,119958,
  124637,129143,131030,129724,127187,126433,124377,124883,122201,124482,126459,130129,133897,
  135009,134516,133495,132705,132040,130602,135638,140537,146151,150467,152113,151656,151412,
  153371,158268,162456,167652,164871,161671,162060,159735,160672,157030,153820,151114,148978,
  145929,142374,141215,135525,135968,134692,135991,134291,134131,113024,112198,105880,92772,
  84462,93787,100820,101866,97208,94145,92451,93027,91640,93593,91933,89900,81718,77891,73104,
  70082,67057,62178,57642,51786,47466,42065,28004,17186,14492,13838,13957,13358,10442,8063,5604,
  4289,2843,2068,1368,2146)
AGE<-c(0:(length(ND)-1))

estimL <- estimateLifeExpectancy(ND, PS, AGE)

# Using Belgian B19 data
data("VZV_B19_BE_0103")
VZV_B19_BE_0103 <- VZV_B19_BE_0103[!is.na(VZV_B19_BE_0103$parvores)&!is.na(VZV_B19_BE_0103$age)&
  VZV_B19_BE_0103$age<70&VZV_B19_BE_0103$age>=1,]
VZV_B19_BE_0103 <- VZV_B19_BE_0103[order(VZV_B19_BE_0103$age),]

y <- VZV_B19_BE_0103$parvores
a <- VZV_B19_BE_0103$age

# Mean duration of infectiousness
D <- 6/365

# Maximum life (if type mortality this is the life expectancy)
Lmax<-100

# Age of loss of maternal immunity (0<A<1)
A <- 0.5

# Mortality function
My <- estimL$My[1:Lmax]
muy <- estimL$muy[1:Lmax]

# Population size
N <- sum(PS)

data("scd_close_p4h")

contact.result<-contact.fitter.loglinear(a=a,y=y,rij=scd_close_p4h,int=FALSE,
  muy=muy,N=N,D=D,Lmax=85,A=A,plots="TRUE",startpar=c(-2.3,0,0))
c(contact.result$qhat,contact.result$R0,contact.result$aic)
contact.result$qhat/sqrt(diag(solve(contact.result$qhess)))

contact.result<-contact.fitter.loglinear(a=a,y=y,int=TRUE,rij=scd_close_p4h,
  muy=muy,N=N,D=D,Lmax=85,A=A,plots="TRUE",startpar=c(-2.3,0,0))
c(contact.result$qhat,contact.result$R0,contact.result$aic)
contact.result$qhat/sqrt(diag(solve(contact.result$qhess)))

TeaKov/serostat documentation built on May 21, 2019, 1:21 p.m.